图神经网络
文章平均质量分 71
ann0302
这个作者很懒,什么都没留下…
展开
-
GNN图神经网络
通常神经网络的输入是图片、字符或是声音信号,GNN的输入是图,这里的图并非是指图片,而是由节点和边组成的图。图中的节点代表了实体,包含了它们的属性,边则描述了实体之间的关系,知识图谱就是这样一张图。我们为什么需要图神经网络,与图片、语音、文字相比,图能表达的内容实在是太广泛了,大到社交网络中人与人之间的关系,小到化学分子的结构组成,现实生活中的地铁网络,包含器件布线的电路图,都可以是GNN的计算对象。有了图,我们就能完成许多奇妙的工作。将重点放在节点上,我们可以预测社交网络中用户的标签,判断账户是否为原创 2021-07-31 09:22:33 · 808 阅读 · 1 评论 -
异构图 Heterogeneous Graph Neural Networks
定义:包含不同类型节点和链接的异构图像下面这个例子,是一个电影、导演和演员的异构图。第一个异构图的算法异构图图注意力机制Heterogeneous Graph Attention Networks首先看一下作者给的异构图的定义Node-level attention(节点级别的attention)通过meta-path:Movie-Director-Movie得到一个同构图,根据终结者的邻居节点(终结者2和泰坦尼克号)通过一种聚合的方式就可以学习到终结者的一个特征表示。这个就是节点级别的at原创 2021-07-20 12:16:24 · 12681 阅读 · 2 评论 -
图网络的分类
A Comprehensive Survey on Graph Neural Network(图神经网络综述)Recurrent Graph Neural Networks(1.递归图神经网络)Convolution Graph Neural Networks(2.卷积图神经网络)Graph Autoencoders(3.图自动编码器)Spatial-temporal Graph Neural Networks(4.时空图神经网络)**A Comprehensive Survey on Gr原创 2021-07-20 11:43:46 · 1794 阅读 · 1 评论