
人群计数
绿柳山庄赵公子
目前的研究方向为目标检测(Object Detection)和基于RGB-D的显著性检测(RGB-D Salient Object Detection)。
过去的一年里一直忙于论文,很多评论和私信都没有来得及回复,未来我将会慢慢把做的一些工作和论文都整理出来,发布在CSDN和Github上,欢迎大家交流和讨论。
展开
-
论文学习笔记:FCHD: A fast and accurate head detector
FCHD是2018年提出来的人头检测模型,在处理小目标检测的问题上效果很好。论文链接:FCHD: A fast and accurate head detectorAbstract 摘要在本文中,我们提出了fchd - full Convolutional Head Detector,这是一种端到端可训练的头部检测模型,在一个非常普通的GPU上以5 fps的速度运行,平均精度为0.70 (AP)。最近的头部检测技术避免了一开始就使用锚框进行检测,特别是在复杂的环境中。原因是在对象大小较小的情况下,基于原创 2020-09-10 17:20:58 · 1489 阅读 · 0 评论 -
CSRNet-pytorch版本代码复现
一、概述在之前的博客中我有详细介绍过人群计数领域中密度图的生成方法,还有一篇CSRNet的论文学习笔记。人群计数之生成密度图论文学习笔记:CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes接下来我使用ShanghaiTech数据集对论文中提出的CSRNet模型进行了复现,其中关于数据增强等一些细节进行了省略,以方便初学者更快地了解人群计数相关的方法。二、数据集预处理原创 2020-09-04 17:22:37 · 6285 阅读 · 22 评论 -
人群计数之生成密度图
一、概述在近几年人群计数领域的研究中,大多数论文都沿用了MCNN( Multi-column Convolutional Neural Network )中提出的生成密度图的方法,本文将通过代码和CSRNet网络中生成密度图的实例来详细讲解该方法。二、生成密度图在进行人群计数的研究时,数据集通常由原始图片和标注文件共同构成,本文使用的数据集是shanghaiTech,该数据集包含了part_A_final,part_B_final两部分,标注文件是mat格式,里面记录了每个注释人头的二维坐标和总人头数原创 2020-08-21 15:53:06 · 13413 阅读 · 29 评论 -
论文学习笔记:CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes
CSRNet网络模型是2018年CVPR论文中提出来的一种用于人群计数的模型。论文链接:CSRNetAbstract 摘要我们提出了一个拥挤场景识别网络CSRNet,它提供了一种数据驱动的深度学习方法,可以理解高度拥挤的场景,进行精确的计数估计,并提供高质量的密度图。我们提出的CSRNet由两个主要部分组成:一个是作为二维特征提取的前端卷积神经网络(即模型中的前端网络frontend ),另一个是用于后端的扩展CNN(后端网络backend),它使用扩展的核(空洞卷积操作)来传递更大的感受野,并代替池原创 2020-08-18 11:29:28 · 9462 阅读 · 2 评论