学习记录@代码随想录day13:栈与队列part03
239. 滑动窗口最大值
'''
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。
你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
--------------- -----
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
'''
题目链接:https://leetcode.cn/problems/sliding-window-maximum/
没学习前自己的思想:
1.定长队列,进来一个,挤出去一个。
2.大小比较:记录上一个窗口的最大值,与当前进列表的值比较,但是要注意出列表的为最大值,不是很清晰。
自己尝试写了下,不会o(╥﹏╥)o
GPT写的,先理解下
class Solution:
def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
n = len(nums)
# 如果数组或窗口大小为空,直接返回空列表
if n * k == 0:
return []
# 如果窗口大小为1,直接返回原数组
if k == 1:
return nums
# 创建双端队列。队列中存储的是数组元素在数组中的下标
q = deque()
# 创建结果数组
result = []
# 遍历整个数组
for i in range(n):
# 如果队列头部的元素已经超出窗口范围,将其从队列头部移除
if q and q[0] < i - k + 1:
q.popleft()
# 将队列中所有小于当前元素的元素从队列尾部移除
while q and nums[i] > nums[q[-1]]:
q.pop()
# 将当前元素的下标添加到队列尾部
q.append(i)
# 如果当前元素的下标大于或等于窗口大小,
#将队列头部的元素对应的数组元素添加到结果数组中
if i >= k - 1:
result.append(nums[q[0]])
return result
解题思路:
1.在队列中存放最大值的下标
2.如果数组下标小于当前遍历的下标范围,则将队列中左边的下标pop(移动窗口)
3.如果当前遍历的值大于队列中下标对应的值,则将队列中的下标pop(比较大小),将当前值的下标加入队列
4.每个窗口返回一个最大值。
347.前 K 个高频元素
'''
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。
你可以按 任意顺序 返回答案。
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
'''
题目链接:https://leetcode.cn/problems/top-k-frequent-elements/
没有思路,第一感觉是用暴力肯定超时
抄了下代码:
class Solution:
def topKFrequent(self, nums: List[int], k: int) -> List[int]:
#要统计元素出现的频率
map_={}#nums[i]:对应出现的次数
for i in range(len(nums)):
map_[nums[i]] = map_.get(nums[i],0)+1
#对频率排序
#定义一个小顶堆,大小为k
pri_que = []
#用固定大小为k的小顶堆,扫描所有频率的数值
for key,freq in map_.items():
heapq.heappush(pri_que,(freq,key))
if len(pri_que)>k:#如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
heapq.heappop(pri_que)
#找出前k个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出数组
result = [0]*k
for i in range(k-1,-1,-1):
result[i] = heapq.heappop(pri_que)[1]
return result
GPT给的代码,同样的思想:
import heapq # 导入堆模块
from collections import Counter # 导入计数器模块
def top_k_frequent(nums, k):
counter = Counter(nums)
# 统计数组中各元素出现的频率,返回一个字典
heap = []
# 初始化一个空堆,用来存储出现频率最高的 k 个元素
for num, freq in counter.items():
# 遍历字典 counter 中的每个元素,num 表示元素的值,freq 表示元素出现的频率
if len(heap) < k:
# 如果堆的大小小于 k,直接将当前元素添加到堆中
heapq.heappush(heap, (freq, num))
#heapq 是 Python 的堆模块,heappush 是该模块中的一个函数,
#用来将一个元素添加到堆中,并保持堆的顺序性质不变。
# 将元素的频率和元素值组成的元组添加到堆中
else: # 如果堆的大小等于 k,比较当前元素的频率和堆顶元素的频率
if freq > heap[0][0]:
# 如果当前元素的频率大于堆顶元素的频率,将堆顶元素弹出,并将当前元素添加到堆中
heapq.heappop(heap)
heapq.heappush(heap, (freq, num))
result = []
# 初始化一个空列表,用来存储出现频率最高的 k 个元素
while heap:
# 遍历堆中的元素,将元素从堆中弹出,并将其添加到结果列表中
result.append(heapq.heappop(heap)[1])
# 将堆中元素的值添加到结果列表中
return result[::-1]
# 将结果列表倒序输出,以得到按照出现频率从高到低排序的结果
代码思想:
1.将每个数及对应出现的频率加入哈希表
2.定义一个小顶堆,大小为k
3.一次将哈希表中的元素加入小顶堆
4.小顶堆满时比较堆顶元素和待加入元素的大小,大则将堆顶元素弹出,加入当前元素
注意: heapq 是 Python 的堆模块,heappush 是该模块中的一个函数,用来将一个元素添加到堆中,并保持堆的顺序性质不变。所以新元素入堆不用考虑排序问题
总结
今天的题难度都挺大,也不知道大顶堆小顶堆的库函数,没有自己写出来,继续努力,加油加油!
参考链接:https://programmercarl.com/0239.%E6%BB%91%E5%8A%A8%E7%AA%97%E5%8F%A3%E6%9C%80%E5%A4%A7%E5%80%BC.html