学习记录@代码随想录day13:栈与队列part03

学习记录@代码随想录day13:栈与队列part03

239. 滑动窗口最大值

'''
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。
你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置                最大值
---------------               -----
[1  3  -1] -3  5  3  6  7       3
 1 [3  -1  -3] 5  3  6  7       3
 1  3 [-1  -3  5] 3  6  7       5
 1  3  -1 [-3  5  3] 6  7       5
 1  3  -1  -3 [5  3  6] 7       6
 1  3  -1  -3  5 [3  6  7]      7
'''

题目链接:https://leetcode.cn/problems/sliding-window-maximum/

没学习前自己的思想:
1.定长队列,进来一个,挤出去一个。
2.大小比较:记录上一个窗口的最大值,与当前进列表的值比较,但是要注意出列表的为最大值,不是很清晰。
自己尝试写了下,不会o(╥﹏╥)o
GPT写的,先理解下

class Solution:
    def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
        n = len(nums)
         # 如果数组或窗口大小为空,直接返回空列表
        if n * k == 0:
            return []
         # 如果窗口大小为1,直接返回原数组
        if k == 1:
            return nums
        # 创建双端队列。队列中存储的是数组元素在数组中的下标
        q = deque()
        # 创建结果数组
        result = []
         # 遍历整个数组
        for i in range(n):
             # 如果队列头部的元素已经超出窗口范围,将其从队列头部移除
            if q and q[0] < i - k + 1:
                q.popleft()
            # 将队列中所有小于当前元素的元素从队列尾部移除
            while q and nums[i] > nums[q[-1]]:
                q.pop()
             # 将当前元素的下标添加到队列尾部
            q.append(i)
            # 如果当前元素的下标大于或等于窗口大小,
            #将队列头部的元素对应的数组元素添加到结果数组中
            if i >= k - 1:
                result.append(nums[q[0]])
        return result

解题思路:
1.在队列中存放最大值的下标
2.如果数组下标小于当前遍历的下标范围,则将队列中左边的下标pop(移动窗口)
3.如果当前遍历的值大于队列中下标对应的值,则将队列中的下标pop(比较大小),将当前值的下标加入队列
4.每个窗口返回一个最大值。

347.前 K 个高频元素

'''
给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。
你可以按 任意顺序 返回答案。
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
'''

题目链接:https://leetcode.cn/problems/top-k-frequent-elements/
没有思路,第一感觉是用暴力肯定超时
抄了下代码:

 class Solution:
    def topKFrequent(self, nums: List[int], k: int) -> List[int]:
        #要统计元素出现的频率
        map_={}#nums[i]:对应出现的次数
        for i in range(len(nums)):
           map_[nums[i]] = map_.get(nums[i],0)+1
        #对频率排序
        #定义一个小顶堆,大小为k
        pri_que = [] 

        #用固定大小为k的小顶堆,扫描所有频率的数值
        for key,freq in map_.items():
            heapq.heappush(pri_que,(freq,key))
            if len(pri_que)>k:#如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
                heapq.heappop(pri_que)
        
        #找出前k个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出数组
        result = [0]*k
        for i in range(k-1,-1,-1):
            result[i] = heapq.heappop(pri_que)[1]
        return result

GPT给的代码,同样的思想:

import heapq  # 导入堆模块
from collections import Counter  # 导入计数器模块

def top_k_frequent(nums, k):
    counter = Counter(nums)  
    # 统计数组中各元素出现的频率,返回一个字典
    heap = []  
    # 初始化一个空堆,用来存储出现频率最高的 k 个元素
    for num, freq in counter.items(): 
     # 遍历字典 counter 中的每个元素,num 表示元素的值,freq 表示元素出现的频率
        if len(heap) < k: 
         # 如果堆的大小小于 k,直接将当前元素添加到堆中
            heapq.heappush(heap, (freq, num))  
            #heapq 是 Python 的堆模块,heappush 是该模块中的一个函数,
            #用来将一个元素添加到堆中,并保持堆的顺序性质不变。
            # 将元素的频率和元素值组成的元组添加到堆中
        else:  # 如果堆的大小等于 k,比较当前元素的频率和堆顶元素的频率
            if freq > heap[0][0]:  
            # 如果当前元素的频率大于堆顶元素的频率,将堆顶元素弹出,并将当前元素添加到堆中
                heapq.heappop(heap)
                heapq.heappush(heap, (freq, num))
    result = [] 
     # 初始化一个空列表,用来存储出现频率最高的 k 个元素
    while heap:  
    # 遍历堆中的元素,将元素从堆中弹出,并将其添加到结果列表中
        result.append(heapq.heappop(heap)[1])  
        # 将堆中元素的值添加到结果列表中
    return result[::-1]  
    # 将结果列表倒序输出,以得到按照出现频率从高到低排序的结果

代码思想:
1.将每个数及对应出现的频率加入哈希表
2.定义一个小顶堆,大小为k
3.一次将哈希表中的元素加入小顶堆
4.小顶堆满时比较堆顶元素和待加入元素的大小,大则将堆顶元素弹出,加入当前元素
注意: heapq 是 Python 的堆模块,heappush 是该模块中的一个函数,用来将一个元素添加到堆中,并保持堆的顺序性质不变。所以新元素入堆不用考虑排序问题

总结

今天的题难度都挺大,也不知道大顶堆小顶堆的库函数,没有自己写出来,继续努力,加油加油!
参考链接:https://programmercarl.com/0239.%E6%BB%91%E5%8A%A8%E7%AA%97%E5%8F%A3%E6%9C%80%E5%A4%A7%E5%80%BC.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值