学习笔记@代码随想录:动态规划part02

学习笔记@代码随想录:动态规划part02

62.不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?

在这里插入图片描述
题目链接:https://leetcode.cn/problems/2AoeFn/
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:表示从(0,0)到(i,j)总共有d[i][j]条路路径
2.确定递推公式
dp[i][j]=d[i][j-1]+d[i-1][j]
3.初始值
d[0][i]=1
d[i][0]=1
4.确定遍历顺序
递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
5.举例推导dp数组
在这里插入图片描述

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
       
        dp = [[0] * n for _ in range(m)]
        #设置第一行和第一列的基本情况
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        
        #计算每个单元格的唯一路径数
        for i in range(1,m):
            for j in range(1,n):
                dp[i][j]=dp[i-1][j]+dp[i][j-1]
        return dp[m-1][n-1]
#递归,会超时
class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        if m==1 or n==1:
           return 1
        return self.uniquePaths(m-1,n)+self.uniquePaths(m,n-1)

63. 不同路径 II

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 10 来表示。

在这里插入图片描述
题目链接:https://leetcode.cn/problems/unique-paths-ii/
动规五部曲:
1.确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
2.确定递推公式
递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。
3.dp数组如何初始化
见代码
4…确定遍历顺序
从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。
5.举例推导dp数组

# 定义函数,参数为障碍物矩阵
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:

  # 获取矩阵维度
  m = len(obstacleGrid)  
  n = len(obstacleGrid[0])

  # 打印维度便于调试
  print(m,n)

  # 判断起点或终点是否有障碍直接返回0
  if obstacleGrid[m-1][n-1]==1 or obstacleGrid[0][0] ==1:
      return 0

  # 初始化DP数组为0      
  dp = [[0] * n for _ in range(m)]

  # 处理第一行
  for i in range(m):  
      # 遇到障碍越过继续  
      if obstacleGrid[i][0] == 0:
          # 否则第一个元素为1  
          dp[i][0] = 1
      else:
          break

  # 处理第一列
  for j in range(n):  
      if obstacleGrid[0][j] == 0:
          dp[0][j] = 1
      else:
          break

  # DP迭代计算        
  for i in range(1,m):
      for j in range(1,n):
          # 越过障碍点  
          if obstacleGrid[i][j] == 1:
              continue
          #状态转移方程
          dp[i][j]=dp[i-1][j]+dp[i][j-1]

  # 返回DP结果       
  return dp[m-1][n-1]

参考链接:https://programmercarl.com/0063.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84II.html#%E6%80%9D%E8%B7%AF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值