学习笔记@代码随想录:动态规划part02
62.不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
题目链接:https://leetcode.cn/problems/2AoeFn/
1.确定dp数组(dp table)以及下标的含义
dp[i][j]:表示从(0,0)到(i,j)总共有d[i][j]条路路径
2.确定递推公式
dp[i][j]=d[i][j-1]+d[i-1][j]
3.初始值
d[0][i]=1
d[i][0]=1
4.确定遍历顺序
递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
5.举例推导dp数组
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
dp = [[0] * n for _ in range(m)]
#设置第一行和第一列的基本情况
for i in range(m):
dp[i][0] = 1
for j in range(n):
dp[0][j] = 1
#计算每个单元格的唯一路径数
for i in range(1,m):
for j in range(1,n):
dp[i][j]=dp[i-1][j]+dp[i][j-1]
return dp[m-1][n-1]
#递归,会超时
class Solution:
def uniquePaths(self, m: int, n: int) -> int:
if m==1 or n==1:
return 1
return self.uniquePaths(m-1,n)+self.uniquePaths(m,n-1)
63. 不同路径 II
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
题目链接:https://leetcode.cn/problems/unique-paths-ii/
动规五部曲:
1.确定dp数组(dp table)以及下标的含义
dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。
2.确定递推公式
递推公式和62.不同路径一样,dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
但这里需要注意一点,因为有了障碍,(i, j)如果就是障碍的话应该就保持初始状态(初始状态为0)。
3.dp数组如何初始化
见代码
4…确定遍历顺序
从递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1] 中可以看出,一定是从左到右一层一层遍历,这样保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值。
5.举例推导dp数组
# 定义函数,参数为障碍物矩阵
def uniquePathsWithObstacles(self, obstacleGrid: List[List[int]]) -> int:
# 获取矩阵维度
m = len(obstacleGrid)
n = len(obstacleGrid[0])
# 打印维度便于调试
print(m,n)
# 判断起点或终点是否有障碍直接返回0
if obstacleGrid[m-1][n-1]==1 or obstacleGrid[0][0] ==1:
return 0
# 初始化DP数组为0
dp = [[0] * n for _ in range(m)]
# 处理第一行
for i in range(m):
# 遇到障碍越过继续
if obstacleGrid[i][0] == 0:
# 否则第一个元素为1
dp[i][0] = 1
else:
break
# 处理第一列
for j in range(n):
if obstacleGrid[0][j] == 0:
dp[0][j] = 1
else:
break
# DP迭代计算
for i in range(1,m):
for j in range(1,n):
# 越过障碍点
if obstacleGrid[i][j] == 1:
continue
#状态转移方程
dp[i][j]=dp[i-1][j]+dp[i][j-1]
# 返回DP结果
return dp[m-1][n-1]
参考链接:https://programmercarl.com/0063.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84II.html#%E6%80%9D%E8%B7%AF