Hive原理

本文介绍了Hive的数据存储结构,重点讲解了分区表和分桶表的区别。分区表通过创建多个文件夹来组织数据,而分桶表则是将数据划分到多个文件中。理解这两者对于高效查询和管理Hive表至关重要。注意,当HDFS中删除表数据时,需要删除Hive的元数据并重新创建表。
摘要由CSDN通过智能技术生成

Hive的数据存储结构:

    元数据存储:通常存储在关系型数据库中比如mysql derby(hive自带的一般不用,路径不同记录不同)作用是用来将hdfs文件,目录和sql映射关系存储
Hive 中所有的数据都存储在 HDFS 中,没有专门的数据存储格式
在创建表时指定数据中的分隔符,Hive 就可以映射成功,解析数据。
e Hive 中包含以下数据模型:
db :在 hdfs 中表现为 hive.metastore.warehouse.dir 目录下一个文件夹
table :在 hdfs 中表现所属 db 目录下一个文件夹
external table :数据存放位置可以在 HDFS 任意指定路径
partition :在 hdfs 中表现为 table 目录下的子目录
bucket :在 hdfs 中表现为同一个表目录下根据 hash 散列之后的多个文件

安装部署:

hive启动时候会加载hadoop

初步使用要点:

1. 使用sql语句ddl操作建立库和表,把文件放在这个表路径下
2. 映射成功显示不为null需要数据类型和表对应,并且分隔符要对应
3. 分区表partition:
        为了减少全表查询,可以按照需求分区划分开,即直观显示在原有表目录下根据分区名创建相关的文件
    注意:分区字段不能和表中字段重复
        是一个虚拟字段,实际结构化数据中没有,实质是一个标识
    使用方式:只能使用load data 命令加载数据
4. 分桶(簇)表clustered实质是分reducetask个数,默认是-1
        注意事项:
            1.分桶功能默认不开启需要手动开启
            2.创建分桶表的时候需要提前指定分成几桶
            3.分桶表的数据要通过insert+select方式导入

分区和分桶表区别:分区表是分成多个文件夹,分桶是分成多个文件

注意:若是hdfs删除了表数据,需要drophive的元数据重新建表
missingEOF 语法错误

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值