物体位姿估计
文章平均质量分 77
Fly_To_Sky666
这个作者很懒,什么都没留下…
展开
-
EPOS: Estimating 6D Pose of Objects with Symmetries
EPOS1 表面面片2 网络架构2.1 语义分割2.2 所属面片分类2.3 三维点坐标回归2.4 损失函数3 对称物体4 位姿求解 EPOS本质上也是一种基于2D-3D稠密对应的6D位姿估计方法,只不过它不是直接回归得到物体图像区域某像素对应的归一化的三维坐标点,而是将物体三维模型表面分割成一定数量的面片,这样在确定2D-3D对应关系时,首先是确定二维像素点对应的面片(这是一个分类问题),然后再回归得到三维点相对于该面片局部坐标系的坐标。 这种间接地确定2D-3D对应关系的方法还有一个好处就是考虑原创 2021-04-02 17:15:41 · 1267 阅读 · 1 评论 -
DPOD: 6D Pose Object Detector and Refiner
DPOD1 Correspondence Mapping2 Inference pipeline3 Pose Refinement DPOD (Dense Pose Object Detector)是一种基于稠密对应的6D位姿估计方法,不过它的对应不是回归图像中ROI像素对应的归一化的3D坐标,而是将物体的三维模型涂上一层各处都不一样的颜色,然后将2D-3D对应问题转化为分类问题。1 Correspondence Mapping 如图所示,将一张两通道的correspondence textur原创 2021-03-31 17:15:01 · 862 阅读 · 0 评论 -
CDPN
CDPN1 网络结构2 Dynamic Zoom In (DZI)3 Scale-invariant Translation Estimation (SITE)1 网络结构 本文的思路是将物体的6DoF位姿估计拆分为旋转矩阵的估计和位移向量的估计。其中,旋转矩阵的估计首先通过网络学习2D-3D的稠密对应,然后通过RANSAC PnP算法可以鲁棒性地求解旋转矩阵;而位移向量的估计主要是估计物体中心点在图像上对应的投影点和深度。 本文创新的地方在于估计旋转矩阵时,提出了DZI模块,该模块可以摆脱网络原创 2021-03-29 19:56:30 · 1058 阅读 · 0 评论 -
CosyPose: Consistent multi-view multi-object 6D pose estimation
CosyPose1 Object candidate generation2 Object candidate matching2.1 两视图间相对位置的估计2.2 所有视图间的匹配3 Global scene refinement 本文提出了一种估计多视图多物体6D位姿的方法。主要分为两大块内容,首先是创新了一种单视图单物体的6D位姿估计网络(DeepIM),通过该网络单独预测同一场景下每个物体相对于某一视图的位姿;然后再通过匹配不同视图找到场景中每个物体在各个视图中的对应关系,继而通过BA(Bund原创 2021-03-25 22:17:55 · 929 阅读 · 0 评论 -
Pix2Pose: Pixel-Wise Coordinate Regression of Objects for 6D Pose Estimation
Pix2Pose1 网络结构2 损失函数3 位姿计算 本文介绍了一种两阶段的6D位姿估计方法,第一阶段通过CNN预测图像中物体像素集对应的三维点在物体坐标系中的归一化坐标;第二阶段基于二维像素点和预测三维点的对应关系通过RANSAC-based PnP方法求解物体的位姿。 论文中还提出了一种新的损失函数Transformer loss,该损失函数可以较好地解决对称物体地位姿估计问题。1 网络结构 网络采用生成对抗式学习方式训练。其中,Generator部分采用了encoder-decoder原创 2021-03-24 20:26:27 · 1138 阅读 · 1 评论 -
Single-Stage 6D Object Pose Estimation
目录1 动机2 网络结构1 动机作者注意到现阶段大多数基于2D投影点预测的网络的优化目标是减小预测点位置和真实点位置的平均误差,因此,即使是同一个优化目标值,也可能得到两个不同的预测结果。所以作者将RANSAC-based PnP用深度神经网络代替来直接预测位姿。2 网络结构 总共分为三个阶段:每个关键点的预测点集输入到一个共享的MLP中提取特征;对于每一个关键点的点集进行最大池化操作,类似于PointNet以体现该类中各个关键点的无序特性,得到一个128维的向量,8个关键点的向量进行c原创 2021-03-22 21:06:56 · 548 阅读 · 0 评论 -
Segmentation-driven 6D Object Pose Estimation
目录1 物体分割2 关键点回归3 推理阶段1 物体分割 物体分割网络分支基于encoder-decoder形似的网络,encoder部分采用了YOLOv3的Backbone Darknet-53,decoder部分并没有上采样得到原图尺寸的结果,所以分割的基本单位不是像素,而是文中所说的grid cell。2 关键点回归 这里对物体6D位姿估计也是通过回归三维BBox的二维投影点坐标,不过并不是通过全局的回归,而是每个属于该物体的grid cell都进行关键点的回归。网络结构部分和分割分支一样原创 2021-03-22 20:46:14 · 278 阅读 · 0 评论 -
6D位姿识别-BB8
BB81 图像中物体的定位1.1 粗分割1.2 细分割2 预测三维位姿1 图像中物体的定位 这一阶段的任务是在图像中识别物体的中心点,分为两个阶段:1.1 粗分割将尺寸为512×\times× 384的图像分割为128×\times× 128大小的图像块;将图像块输入到VGG分类网络(将最后全连接层的输出改为16×16=25616\times 16=25616×16=256)中,得到每个8×\times× 8图像块的分类结果,这里为二分类,即决定是物体还是背景;大于设定阈值的8×\time原创 2021-03-10 20:50:04 · 1521 阅读 · 0 评论 -
6DoF位姿估计之SSD-6D
SSD-6D1 网络模型2 损失函数3 后处理3.1 旋转对称和半对称物体3.2 位移向量计算4 评价1 网络模型SSD-6D网络模型的算法流程为:输入一张299×\times× 299的彩色图像到backbone网络(InceptionV4)中,得到6个不同尺度的特征图;接着对于每一个特征图,通过3×\times× 3的滑动窗口得到特征图上每个像素点的分类和回归结果,分类结果包括CCC种物体类别、采样得到的VVV个viewpoints(可以理解为纬度)和RRR个in-plane rotatio原创 2021-03-10 20:02:25 · 1035 阅读 · 0 评论