【笔记】区块链系列论文学习| AI-enhanced blockchain technology: A review of advancements andopportunities

摘要:AI集成到区块链中可解决安全性、共识、可扩展性和互作性等问题,本文专注解决AI解决方案如何增强和优化区块链技术及应用。

区块链目的:安全地储存每个人都可见的大量数据,使其成为训练深度学习模型通常需要的大量数据的理想提供商。可以为AI开发人员社区提供显著优势,利用区块链共享本地收集的数据。

通过区块链确保训练过程的透明度和公平性,促进社区之间的合作,允许集体解决而非依赖个人

深度强化学习(DRL)广泛用于基于区块链的物联网(IoT)网络和工业互联网

机器学习技术在增强公共区块链安全方面得到应用:监督方法被广泛应用于各种任务,eg比特币中的实体分类:1.通过识别地址聚合。2.使用集成预测非法交易。3.用决策树区分交换节点和矿工。4.检测以太坊区块链上的欺诈账户

神经网络用于:加密货币价格预测,通常被视为分类任务    修剪k均值和期望最小化等聚类方法在检测与洗钱、勒索软件攻击和其他可疑活动相关的欺诈交易方面也非常有效 

本文重点:AI如何通过与底层协议交互来直接增强基于区块链的应用程序

区块链系统面临的挑战:可扩展性、安全性和效率

通过探索如何利用人工智能来优化共识机制、增强智能合约执行和加强区块链网络中的数据隐私

论文的结构:

第二节:介绍人工智能和区块链基本概念。

第三节:比较其他现有分类指标,按不同指标分类。

第四节:讨论各种应用领域利用人工智能和区块链的重要项目

第五节:探讨利用人工智能增强区块链技术的各种潜在方法

第六节:AI有效缓解具体问题及尚未解决的问题的见解

第七节:想法和结论

机器学习(ML) 深度学习(DL)神经网络(NN)

神经网络是机器学习算法的一个子集,神经网络可以被视为映射函数。采用不同的输入经训练返回所需输出的输出。深度神经网络总结:层数多、神经元数多。使用神经模型解决特定任务的主要优势来源于网络自身学习最佳参数配置的能力

前馈全连接(ANN) 卷积神经网络(CNN)

递归神经网络(RNN):长短期记忆(LSTM)门控循环单元(GRU)

机器学习解决三组任务:

1.监督学习(SL),涉及分类和回归问题。结果受限,需要大型标记数据集

2.无监督学习(UL),数据未标记,检测具有固有强相似性的数据组方法。聚类方法  生成对抗网络(GAN)

3.强化学习(RL),通过与环境试错交互来学习做出决策

围绕深度学习技术的两个问题:1.数据稀缺性   2.决策过程的不可解释性

1.数据稀缺性:机器学习算法和深度神经网络需要大量具有良好可变性的数据,才能提取出有意义的模式,同时能够保持良好的泛化水平。通常情况下数据采集可能会受到物理、时间或财务限制的限制,缓解此种情况提出的生成对抗。

2.决策过程不可解释性:神经网络不透明,人类无法追踪他们的预测,网络通常被称为黑匣子,由于其多层性,很难理解学习如何发生或高级特征代表什么。

XAI 提高AI模型的透明度、可解释性和可解释性的方法和策略。分层相关性传播(LRP)帮助了解特定输入向量的哪些特征和像素对神经网络的输出贡献最大,但近年的处理依然不行

区块链介绍:

以下内容包括AI和区块链相融合:

1.独立使用区块链和AI算法的应用程序

2.利用区块链增强AI的应用程序

3.使用AI增强区块链的应用程序

区块链作为分布式数据存储解决方案,将一定程度的AI应用于其存储的数据

利用区块链,DLT来训练机器学习模型。通常称为联合学习或协作学习 涉及一个分布式实体系统,共同解决特定的机器学习任务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值