SpringBoot整合ElasticSearch

准备工作

安装ElasticSearch
安装分词器analyzer
安装可视化插件elasticSearch-head
可从网上资源下载安装即可,我这里演示环境为6.2.4

核心依赖

   <!--SpringBoot启动器-->
   <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
        </dependency>
    <!--实体支持依赖-->    
        <dependency>
            <groupId>org.springframework.data</groupId>
            <artifactId>spring-data-elasticsearch</artifactId>
            <version>3.2.3.RELEASE</version>
        </dependency>
        

配置文件

注意:我这里是配置了集群elasticSearch,如需集群搭建请参考以下步骤

  1. 赋值三份ElasticSearch,改变端口即可,核心代码如下
    elasticSearch 三份配置文件根据该ip端口依次修改
#允许跨域访问
http.cors.enabled: true
#任何请求都有权限访问
http.cors.allow-origin: /.*/
#集群名称
cluster.name: my-elasticsearch
#版本 
node.name: node-1
#服务器ip
network.host: 127.0.0.1
#服务器端口
http.port: 9201
#集群节点单服务器端口
transport.tcp.port: 9301
#集群下属ip服务,顺序最前表示默认9301
discovery.zen.ping.unicast.hosts: ["127.0.0.1:9301","127.0.0.1:9302","127.0.0.1:9303"]

SpringBoot核心配置文件

server:
  port: 8765
spring:
  application:
    name: elastic-server
  datasource:
    driver-class-name: com.mysql.jdbc.Driver
    username: root
    password: root
    url: jdbc:mysql://localhost:3306/myservers?characterEncoding=utf-8
    # sql is update
    jpa:
      hibernate:
        ddl-auto: update
      show-sql: true
  data:
    elasticsearch:
      cluster-name: my-elasticsearch
      cluster-nodes: 127.0.0.1:9301,127.0.0.1:9302,127.0.0.1:9303
eureka:
  instance:
    hostname: localhost
    defaultZone:
  client:
    service-url:
      defaultZone: http://localhost:8761/eureka/

基本操作步骤

创建索引库实体

ElasticSearch会根据实体属性字段映射索引库并完成创建

//indexName:索引名称
//type:文档名称
@Document( indexName = "indexname",type = "myindex")
//jdk1.8 lombok插件
@Data
public class MyNameList {
//主键
    @Id
//字段属性支持,
//	value:对应字段名称,store:返回响应数据时是否返回默认true    
    @Field(value = "id",store = true)
    private Long id;
//type:字段类型Text为文本
//analyzer:分词器,ik_max_word更细制分词查询,ik_smart精准查询    
    @Field(value = "name", type = FieldType.Text, analyzer = "ik_max_word",store = true)
    private String name;

    @Field(value = "soudu", type = FieldType.Text, analyzer = "ik_max_word",store = true)
    private String soudu;

根据实体创建索引库并映射

SpringBoot-ElasticSearch提供类

    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;

方法:
创建索引
elasticsearchTemplate.createIndex(MyNameList.class);
//映射索引属性类型
elasticsearchTemplate.putMapping(MyNameList.class);

索引库CRUD

定义接口继承操作ElasticSearch的提供类

public interface XwLElasticDao extends ElasticsearchRepository<MyNameList,Long> {
}

@Autowired
private XwLElasticDao xwLElasticDao;
@Autowired
private JdbcTemplate jdbcTemplate;

  				MyNameList myNameList = new MyNameList();
                myNameList.setId(21l);
                myNameList.setName("张");
                int x = (int) (Math.random() * 50) + 1;
                myNameList.setSoudu(String.valueOf(x));
                xwLElasticDao.save(myNameList);
  • 查看地址:http://localhost:9100/
    可视化索引状态图
  • 数据浏览在这里插入图片描述
    - 删除索引

elasticsearchTemplate.deleteIndex(MyNameList.class)

- 修改索引

  • elasticSearch修改是先进行删除然后再进行新增,所以在修改时根据id先删除当前内容,然后再新增最新数据即可

查询举例

需求:用户输入中文字符检索姓名并进行分页处理,在响应结果中只展示姓名,其它字段不进行显示

 //封装查询条件
        NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder();
        //分页
 //分页       queryBuilder.withPageable(PageRequest.of(current<=1?0:current-1, size));
        //过滤条件
        MatchQueryBuilder matchQueryBuilder = null;
     	//匹配查找数据
            matchQueryBuilder = QueryBuilders.matchQuery("name",nameCode);
            
            queryBuilder.withQuery(matchQueryBuilder);
       
        //只显示有关信息-姓名
        queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{"name"}, null));
        //查询
        Page<MyNameList> search = xwLElasticDao.search(queryBuilder.build());

更多查询请参考官方文档~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值