机器学习
blackjacki
这个作者很懒,什么都没留下…
展开
-
特征处理
特征处理字典特征抽取文本特征抽取TF-IDF归一化标准化缺失值插补字典特征抽取作用:对字典数据进行特征值化sklearn.feature_extraction.DictVectorizerDictVectorizer(sparse=True,…)DictVectorizer.fit_transform(X) #X:字典或者包含字典的迭代器#返回值:返回sparse矩阵DictVectorizer.inverse_transform(X)#X:array数组或者sparse矩阵原创 2020-11-29 17:27:57 · 174 阅读 · 0 评论 -
集成学习原理概述
集成学习原理概述集成学习(ensemble learning)可以说是现在非常火爆的机器学习方法了。它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务。也就是我们常说的“博采众长”。集成学习可以用于分类问题集成,回归问题集成,特征选取集成,异常点检测集成等等,可以说所有的机器学习领域都可以看到集成学习的身影。本文就对集成学习的原理做一个总结。1. 集成学习概述从...转载 2019-08-23 12:30:51 · 161 阅读 · 0 评论 -
经验风险和结构风险
经验风险是对训练集中的所有样本点损失函数的平均最小化。相比于经验风险,结构风险多了一个惩罚项。原创 2019-08-23 13:25:33 · 303 阅读 · 0 评论