树状数组+离散化求逆序对超详细讲解!

树状数组+离散化求逆序对

用一个数组 w [ ] w[] w[]来记录遍历到当前数时,每个数出现的次数
由于只关心每个数前边有多少个数比他大,遍历到 i i i时,求大于 a [ i ] a[i] a[i]的数有多少个,就是对 [ a [ i ] , n ] [a[i], n] [a[i],n]求和。
之后将 a [ i ] a[i] a[i]的出现次数 w [ a [ i ] ] + 1 w[a[i]]+1 w[a[i]]+1再求后边的答案。

如果暴力来做是 O ( n 2 ) O(n^2) O(n2)的(不知道这个对不对,不过不重要)

for (int i = 1; i <= n; i++) {
    int cnt = 0;
    for (int j = a[i]; j <= n; j++) {
        cnt += w[j];
    }
    ans += cnt;
    w[a[i]]++;
}

发现即要做单点修改 w [ a [ i ] ] + 1 w[a[i]] + 1 w[a[i]]+1,又要做区间查询 ∑ j = a [ i ] n w [ j ] \sum\limits_{j=a[i]}^{n} w[j] j=a[i]nw[j],于是用树状数组维护 w [ ] w[] w[]来降低复杂度。

回顾树状数组的两个操作:区间查询 + 单点修改
q u e r y ( i ) 表示查询区间 [ 1 , i ] 的和 query(i)表示查询区间[1, i]的和 query(i)表示查询区间[1,i]的和
a d d ( i , k ) 表示将含有 a [ i ] 的点都 + k add(i, k)表示将含有a[i]的点都+k add(i,k)表示将含有a[i]的点都+k

(实际上这里说的树状数组是权值树状数组,就是记录每个数出现的次数的树状数组)

一个前提:只关心相对大小,数本身有多大我并不关心,所以可以离散化(否则数据太大的话 w [ ] w[] w[]放不下那么大的下标会爆掉)

写法1

按照每个数的大小降序排序,如果大小相等则按照位置降序排序(考虑为什么这么做?)

假设在排序后的数组中第 i i i个数的原位置为 p [ i ] p[i] p[i]树状数组维护的是,每个原位置的数是否出现。
比如:

原数组:3 2 1 5 4
下标 :1 2 3 4 5

排序后:5 4 3 2 1
原位置:4 5 1 2 3

遍历到第2个数4时,记录情况为:[0, 0, 0, 1, 0],即原位置为4的数已经出现了。
我们知道4的原位置为5,此时对区间[1, 5]求和,就是原位置5对应的逆序对数量。
把原位置5记录进去。

遍历到第3个数3时,记录情况为:[0, 0, 0, 1, 1],原位置4 5的数已经出现了
知道3的原位置为1,此时对区间[1, 1]求和,就是原位置1对应逆序对的数量。
把原位置1记录进去。

遍历到第4个数2时,记录情况为:[1, 0, 0, 1, 1],原位置1 4 5的数已经出现了
知道2的原位置为2,此时对区间[1, 2]求和,就是原位置2对应逆序对的数量。
把原位置2记录进去。

遍历到第5个数1时,记录情况为:[1, 1, 0, 1, 1],原位置1 2 4 5的数已经出现了
知道1的原位置为3,此时对区间[1, 3]求和,就是原位置3对应逆序对的数量。
把原位置3记录进去。

看懂这一丁点就行,下边是一顿胡扯,可以不看了


注意:以下所有情况都在排好序的数组中进行!!!

现在来考虑两个情况

1. 当前数是唯一的,不考虑相同数位置降序排序的情况

记第 i 个数为 a [ i ] , 排序前位置为 p [ i ] 记第i个数为a[i], 排序前位置为p[i] 记第i个数为a[i],排序前位置为p[i]
要查询这个位置对应的逆序对数量
因为我们已经按照降序进行了排序,就变为查询 位置在 p [ i ] p[i] p[i]之前且大于 a [ i ] a[i] a[i]的数的个数
对应到排序后的数组中就是:
  前 i − 1 i - 1 i1个数中原位置在 p [ i ] p[i] p[i]之前的数。
  因为排序已经确保了前 i − 1 i - 1 i1个数都是比 a [ i ] a[i] a[i]大的数,现在只需要在前 i − 1 i - 1 i1个数中找到位置在 p [ i ] p[i] p[i]前的数就可以了

比他大的数在排序前只有两种情况:在他前边/在他后边
只有 (排序前在他前边) 的数才会构成逆序对,在他后边的数不会构成逆序对

再次强调,因为是降序排序,故已经确保了 (遍历到第 i i i个数时已经记录出现的数) 都是大于 a [ i ] a[i] a[i]的。

那么对于第 i i i个数,(比 a [ i ] a[i] a[i]大) 且 (在 p [ i ] p[i] p[i]之前出现) 的数的个数,实际上就是已经记录出现了的数的个数,即 [ 1 , p [ i ] ] [1, p[i]] [1,p[i]]的和。求区间 [ 1 , p [ i ] ] [1, p[i]] [1,p[i]]的和,就是 q u e r y ( p [ i ] ) query(p[i]) query(p[i])
最后将这个位置的数记为出现, a d d ( p [ i ] , 1 ) add(p[i], 1) add(p[i],1)

2. 如果数不唯一

数不唯一的话按照位置降序排序

考虑一下,假设已经按照位置进行了降序排序
当前数为 a [ i ] a[i] a[i],位置 p [ i ] p[i] p[i]
排序后数组中在当前数之前的相同数 a [ j ] a[j] a[j],对应位置 p [ j ] p[j] p[j]一定在 p [ i ] p[i] p[i]后边
那么 [ 1 , p [ i ] ] [1, p[i]] [1,p[i]]求和时,是这样的一个区间:
1 2 3 4 ... p[i] ... p[j] ...
就不会把相同的数也算到逆序对中,这样就避免了重复计算。

总结一下核心:降序排序后每个位置 i i i要查询的区间和 [ 1 , p [ i ] ] [1,p[i]] [1,p[i]],是出现在原数组位置 p [ i ] p[i] p[i]之前且大于当前数的元素个数

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>

#define debug(x) std::cerr << "#x" << " = " << x << ' '
#define DEBUG(x) std::cerr << "#x" << " = " << x << std::endl

typedef long long ll;
using namespace std;

const int N_MAX = 500000 + 10;

int n;
int tr[N_MAX];
struct Node {
    int v, p;

    bool operator < (const Node& other) const {
        if (v != other.v) return v > other.v;
        return p > other.p;
    }
}a[N_MAX];

int lowbit(int x) {
    return x & -x;
}

void inc(int x, int v) {
    for (int i = x; i <= n; i += lowbit(i)) tr[i] += v;
}

ll calc(int x) {
    ll sum = 0ll;
    for (int i = x; i >= 1; i -= lowbit(i)) sum += tr[i];
    return sum;
}

int main() {
    cin >> n;
    for (int i = 1; i <= n; i++) cin >> a[i].v, a[i].p = i;
    sort(a + 1, a + n + 1);

    ll ans = 0ll;
    for (int i = 1; i <= n; i++) {
        ans += calc(a[i].p);
        inc(a[i].p, 1);
    }
    printf("%lld\n", ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值