题意:
有一些学生在 x x x 轴上跑步,速度为 1 1 1 ,可以有两种方向,并且具有起始时间、结束时间和起始位置。现在有 n n n 个监视器,每个监视器记录了 ( t , x ) (t,x) (t,x),表示在t时刻, x x x 位置有人。问最少有多少个学生有去跑步。
思路:
如果建立 y y y 轴为时间,那么每个学生就是 y = x + b 、 y=x+b、 y=x+b、 y = − x + b y=-x+b y=−x+b 直线上的一段,而监视器就是坐标系上的点,现在就是问怎么选择最少的线段,使得点全被覆盖。而对于一个点,就会对应两条线可以覆盖它,而一个点可以用截距 b b b 来代表,就相当于一个二分图匹配问题,然后求最大匹配,进而转化为最大流来解决。
代码:
#include <bits/stdc++.h>
#define ll long long
#define inf 0x3f3f3f3f
#define PII pair<int,int>
#define ls x<<1
#define rs x<<1|1
#define fi first
#define se second
#define pb push_back
#define cwk freopen("D:\\c++\\in.txt","r",stdin),freopen("D:\\c++\\out.txt","w",stdout)
using namespace std;
const int N=5e5+10;
const int M=1e6+10;
int T;
int n;
int a[N],b[N];
vector<int>v;
int getid(int x) {
return lower_bound(v.begin(),v.end(),x)-v.begin()+1;
}
struct Maxflow{
int h[N],cur[N],ne[M],to[M],tot,deep[N],s,t,mx;
ll flow[M],ans;
inline void init(int a,int b,int c){
s=a;t=b;mx=c;
for(int i=0;i<M;i++)ne[i]=0;
for(int i=0;i<N;i++)h[i]=0;
tot=1;ans=0;
}
inline void addedge(int x,int y,int z){
to[++tot]=y;ne[tot]=h[x],h[x]=tot,flow[tot]=z;
swap(x,y);
to[++tot]=y;ne[tot]=h[x],h[x]=tot,flow[tot]=0;
}
inline bool bfs(){
for(int i=0;i<=mx;i++)deep[i]=-1;
queue<int>q;
q.push(s);deep[s]=0;
for(int i=0;i<=mx;i++)cur[i]=h[i];
while(!q.empty())
{
int now=q.front();q.pop();
for(int i=h[now];i;i=ne[i]){
int v=to[i];
if(deep[v]==-1&&flow[i]>0)deep[v]=deep[now]+1,q.push(v);
}
}
return deep[t]!=-1;
}
inline ll dfs(int u,ll op){
if(u==t||op==0)return op;
ll f=0,us=0;
for(int i=cur[u];i;i=ne[i]){
cur[u]=i;
int v=to[i];
if(deep[v]==deep[u]+1&&flow[i]>0){
us=dfs(v,min(op,flow[i]));
if(!us)continue;
f+=us;op-=us;
flow[i]-=us;flow[i^1]+=us;
if(!op)break;
}
}
if(!f)deep[u]=-1;
return f;
}
inline ll maxflow(){
while(bfs()){
ans+=dfs(s,inf);
}
return ans;
}
}F;
int main()
{
//cwk;
scanf("%d",&T);
while(T--) {
scanf("%d",&n);
v.clear();
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i],&b[i]),v.pb(a[i]+b[i]),v.pb(a[i]-b[i]);
sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());//离散化
int m=v.size();
F.init(0,2*m+1,2*m+1);
for(int i=1;i<=m;i++) {
F.addedge(0,i,1);
F.addedge(i+m,2*m+1,1);
}
for(int i=1;i<=n;i++) {
int l=getid(a[i]-b[i]);
int r=getid(a[i]+b[i]);
F.addedge(l,r+m,inf);
}
ll ans=F.maxflow();
printf("%lld\n",ans);
}
return 0;
}