题目来源:
https://www.luogu.org/problemnew/show/P1875
题目描述:
题目背景
发完了 k 张照片,佳佳却得到了一个坏消息:他的 MM 得病了!佳佳和大家一样焦急 万分!治好 MM 的病只有一种办法,那就是传说中的 0 号药水 ……怎么样才能得到 0 号药 水呢?你要知道佳佳的家境也不是很好,成本得足够低才行……
题目描述
得到一种药水有两种方法:可以按照魔法书上的指导自己配置,也可以到魔法商店里去 买——那里对于每种药水都有供应,虽然有可能价格很贵。在魔法书上有很多这样的记载:
1 份 A 药水混合 1 份 B 药水就可以得到 1 份 C 药水。(至于为什么 1+1=1,因为……这是魔 法世界)好了,现在你知道了需要得到某种药水,还知道所有可能涉及到的药水的价格以及 魔法书上所有的配置方法,现在要问的就是:1.最少花多少钱可以配制成功这种珍贵的药水;
2.共有多少种不同的花费最少的方案(两种可行的配置方案如果有任何一个步骤不同则视为 不同的)。假定初始时你手中并没有任何可以用的药水。
输入输出格式
输入格式:
第一行有一个整数 N(N<=1000),表示一共涉及到的药水总数。药水从 0~N1 顺序编号,0 号药水就是 最终要配制的药水。
第二行有 N 个整数,分别表示从 0~N1 顺序编号的所有药水在魔法商店的价格(都表示 1 份的价格)。
第三行开始,每行有 3 个整数 A、B、C,表示 1 份 A 药水混合 1 份 B 药水就可以得到 1 份 C 药水。注意,某两种特定的药水搭配如果能配成新药水的话,那么结果是唯一的。也就是 说不会出现某两行的 A、B 相同但 C 不同的情况。
输入以一个空行结束。
输出格式:
输出两个用空格隔开的整数,分别表示得到 0 号药水的最小花费以及花费最少的方案的个 数。
输入输出样例
输入样例#1: 复制
7 10 5 6 3 2 2 3 1 2 0 4 5 1 3 6 2
输出样例#1: 复制
10 3
说明
样例说明:
最优方案有 3 种,分别是:直接买 0 号药水;买 4 号药水、5 号药水配制成 1 号药水,直接 买 2 号药水,然后配制成 0 号药水;买 4 号药水、5 号药水配制成 1 号药水,买 3 号药水、6 号药水配制成 2,然后配制成 0。
解题思路:
这题就是,一个求最短路和最短路计数的问题,但是一开始用spfa计数一直出错,不懂为什么,好像spfa的计数和dij的不一样,所以,我就改成用数组模拟的dij了,对可以配制成c药水的a和b,建边tu【a】【b】=c;然后就是最短路松弛操作了;
不过在计数的时候,因为有两种药水配成的,a药水有x种方法,b药水有y种方法,那合成c药水应该有a*b种,这样就行了。。
代码:
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cstring>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
const int maxn=1e6+10;
int n,vis[1010],cs[1010];
int fy[1010],tu[1010][1010];
int main()
{
memset(tu,-1,sizeof(tu));
scanf("%d",&n);
for(int i=0;i<n;i++)
{
scanf("%d",&fy[i]);
cs[i]=1;
}
int a,b,c;
while(scanf("%d%d%d",&a,&b,&c)!=EOF)
{
tu[a][b]=c;
tu[b][a]=c;
}
for(int i=0;i<n-1;i++)
{
int t=inf,bj;
for(int j=0;j<n;j++)
{
if(!vis[j]&&fy[j]<t)
{
bj=j;t=fy[j];
}
}
vis[bj]=1;
for(int j=0;j<n;j++)
{
if(vis[j]&&tu[j][bj]!=-1)
{
if(fy[tu[j][bj]]>fy[j]+fy[bj])
{
fy[tu[j][bj]]=fy[j]+fy[bj];
cs[tu[j][bj]]=cs[bj]*cs[j];
}
else if(fy[tu[j][bj]]==fy[j]+fy[bj])
cs[tu[bj][j]]+=cs[j]*cs[bj];
}
}
}
printf("%d %d\n",fy[0],cs[0]);
return 0;
}