LeetCode 15 三数之和

首先很容易想到的是三层循环遍历,时间复杂度o(n^3),但是会超时,然后一般能想到的是通过排序来优化,排序的复杂度为o(nlogn),然后通过双指针遍历,总体复杂度为o(n^2),但是在实现上有很多细节可以优化,三个指针从左到右为k,i,j,升序排列为例,有

 1.当nums[k]>0时,跳过k,因为nums[j]>nums[i]>nums[k]>0,三者相加必大于零

2.当nums[k]与nums最后两个数相加<0时可以跳过,因为nums[k]与数组中任何两个数相加必小于零

3.结合两数之和的可以加入哈希表的思想

 

下面贴一神仙算法

class Solution:
    def threeSum(self, nums):
        """
        :type nums: List[int]
        :rtype: List[List[int]]
        """
        nums_hash = {}
        result = list()
        nums.sort()
        for num in nums:
            nums_hash[num] = nums_hash.get(num, 0) + 1
        if 0 in nums_hash and nums_hash[0] >= 3:
            result.append([0, 0, 0])

        neg = list(filter(lambda x: x < 0, nums_hash))
        pos = list(filter(lambda x: x>= 0, nums_hash))

        for i in neg:
            for j in pos:
                dif = 0 - i - j
                if dif in nums_hash:
                    if dif in (i, j) and nums_hash[dif] >= 2:
                        result.append([i, j, dif])
                    if dif < i or dif > j:
                        result.append([i, j, dif])
        return result

 

参考:https://blog.csdn.net/TeFuirnever/article/details/89231965

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值