神经网络
lvedng^_^
这个作者很懒,什么都没留下…
展开
-
嵌入式Linux平台部署AI神经网络模型Inference的方案
转载:https://www.jianshu.com/p/d4425b65c6e6ONNX 简述 ONNX是一种AI神经网络模型的通用中间文件保存方法(可以理解成AI世界的XML),各种AI框架,Inference引擎,甚至OpenCV里面的dnn onnx相关的模块都可以解析ONNX文件并生成特定平台和运行框架所支持的神经网络模型。ONNX本身不是AI神经网络运行框架,只是AI神经网...原创 2019-11-01 16:41:46 · 1983 阅读 · 0 评论 -
优化算法总结-牛顿法与拟牛顿算法-泰勒展开式
https://blog.csdn.net/zgcr654321/article/details/89674713泰勒展开式,可以近似的将复杂的函数用简单的函数表达,进而可以方便的进行求解在牛顿法中泰勒展开式可以根据当前的点,求解最优的下一点...原创 2019-07-16 14:00:29 · 456 阅读 · 0 评论 -
神经神经网络结构绘图
https://blog.csdn.net/WZZ18191171661/article/details/87886588转载 2019-04-01 16:20:27 · 1074 阅读 · 0 评论 -
神经网络中使用BN其测试以及模型保存方法
模型保存方法:saver = tf.train.Saver(tf.global_variables())下文中在cifar10数据中的模型保存以及测试:训练以及模型保存代码:#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Tue Jan 9 21:46:26 2018@author: lvedn...原创 2019-01-23 14:52:36 · 1786 阅读 · 2 评论 -
自己数据制作tfrecords格式的数据集
数据集格式,将所有测试或者训练数据集各自保存在一个文件夹下:如下图:训练数据集制作.tfrecords格式数据集的代码:import osimport tensorflow as tffrom PIL import Image #注意Image,后面会用到# Imagenet图片都保存在/data目录下,里面有1000个子目录,获取这些子目录的名字classes = os...原创 2019-01-15 21:18:26 · 2120 阅读 · 2 评论 -
OutOfRangeError (see above for traceback): RandomShuffleQueue '_4_shuffle_batch/random_shuffle_queue
在读取tfrecords形式的数据集时报错,由于制作数据时存放的数据大小或者通道数与需要读取的不一致原创 2019-01-15 21:10:10 · 847 阅读 · 1 评论 -
模型保存与使用
https://blog.csdn.net/marsjhao/article/details/72829635一、TensorFlow模型保存和提取方法1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/m...转载 2019-03-30 14:24:30 · 705 阅读 · 0 评论 -
BN使用方法
本文转载:https://blog.csdn.net/m0_37987687/article/details/80241893 https://blog.csdn.net/heiheiya/article/details/81000756 https://blog.csdn.net/candy_gl/articl...转载 2019-01-19 16:37:49 · 2259 阅读 · 1 评论 -
too many values to unpack
该错误原因是输入与输出信息不对成,将3个值赋予两个值a,b=(1,2,3,4)将会报出该种类型的错误a,b,c,d=(1,2,3,4)为正确写法检查输入输出信息的对称性原创 2019-01-08 14:30:55 · 5741 阅读 · 1 评论 -
神经网络各子模块设计
平均池化层def avgpool(x_tensor, pool_ksize, pool_strides): return tf.nn.avg_pool(x_tensor, ksize = [1, pool_ksize[0], pool_ksize[1], 1], strides = [1, pool_strides[0], pool_strides[1], 1], paddin...原创 2019-01-17 21:37:39 · 250 阅读 · 1 评论 -
神经网络设计各模块设计
图像标准化tf.image.per_image_standardization(image) 这个操作计算(x - mean) / adjusted_stddev,其中mean是图像中所有值的平均值,以及adjusted_stddev = max(stddev, 1.0/sqrt(image.NumElements()))。 stddev是image...原创 2019-01-17 16:03:53 · 313 阅读 · 0 评论 -
轻量型神经网络(2)-Mobilenet-v2
MobileNet v2在MobileNet的基础之上添加了类似ResNet网络结构,并在残差快内运用深度可分离卷积将残差快内将两个3x3的卷积核改为两个1x1和一个3x3的深度可分离卷积,该网络结构首先使用1x1的点卷积对输入图像的通道数目进行扩张,之后利用3x3的深度可分离卷积提取每一个通道的特征,最后再利用1x1的点卷积对特征进行通道压缩。其最终效果相比MobileNet ...原创 2018-11-22 23:29:19 · 727 阅读 · 1 评论 -
轻量型神经网络(1)-mobilenet
在近几年随着人工智能的发展,基于神经网络的算法在计算机视觉、自然语言处理、语音识别等方面广泛应用。 神经网络模型的发展趋势越来越复杂。从最初的8层网络结构到100多层的网络结构。但其本质优化方法不变,大多为梯度下降法等优化方法。近几年神经网络的发展大部分原因是因为计算机计算能力的提升。在现有的神经网络中通常有上百万的参数。存在大量的参数冗余。 因此简化神经网络,使得神经网络可以在...原创 2018-11-22 22:59:21 · 1378 阅读 · 1 评论 -
神经网络训练
在神经网络训练中常会出现过拟合、欠拟合、梯度消失、梯度爆炸等现象。过拟合即为模型训练的效果太好,模型在训练集上的准确率大于在测试集上的准确率。通常原因有以下几点:(1)模型过于复杂,模型在很早在训练集上收敛,而在测试集上准确率较低。(2)训练时间太长,导致模型过拟合。常用的避免过拟合的方法:1、正则化方法L1和L2。L!正则化对权重的绝对值进行加和公式如下:L2正则化则...原创 2018-11-22 22:03:30 · 1216 阅读 · 0 评论