FZU2129 子序列总数 去重

博客围绕计算给定序列的不同子序列数量展开,给出输入输出要求,输入包含序列长度及元素,输出为不同子序列数量对10^9 + 7取模的结果,并给出了示例输入输出。

例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列。对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量。由于答案比较大,输出mod 10^9 + 7的结果即可。
Input
第1行:一个数N,表示序列的长度(1 <= N <= 100000)
第2 - N + 1行:序列中的元素(1 <= ai<= 100000)
Output
输出a的不同子序列的数量mod 10^9 + 7。
Sample Input
4
1
2
3
2
Sample Output
13

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
const int mod=1e9+7;
#define rep(i,a,n) for(int i=a;i<=n;i++)
int a[maxn],last[maxn],dp[maxn];//到i时子序列个数 
int main(){
	int n;
	cin>>n;
	rep(i,1,n){
		cin>>a[i];
		if(!last[a[i]]){
			dp[i]=(dp[i-1]+dp[i-1]+1)%mod;//dp[1]=1 再构成dp[i-1]个新的子序列 a[i]单独1个新的 
		}
		else{
			dp[i]=(dp[i-1]+dp[i-1]-dp[last[a[i]]-1]+mod)%mod;	//[1] 2 3 2 
		}//i=4 当前扫描的最后位置   假如是新数用全部-当此数为出现的新数时重复出现1 2 不用+1 之前新数算过 
		last[a[i]]=i;
	}
	cout<<dp[n]<<endl; 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值