三款野生动物识别软件不容错过


104aeca652d23ebd07a25dd496d045e3.jpeg

大家去动物园有遇到不认识的动物,或者刷视频的时候看到一些博主分享的野生动物吗?那大家是怎么知道哪些不认识的动物呢?是根据动物毛发颜色、样貌长相在网上搜索的吗?其实我们可以借助识别动物的软件,扫一扫拍一拍就知道动物的介绍了。那小伙伴们知道野生动物识别软件有哪些吗?接下来这篇文章分享三款识别动物的软件给大家。

a1536fdc29ca6f443978f842f4221867.jpeg

动物识别软件一:微信

微信是我们大家都不陌生的社交软件,众所周知这款软件里配置了一些服务插件,例如:扫一扫、朋友圈 、公众号、搜一搜、直播等等,而它的“扫一扫”工具,就能够识别出花草、二维码、动物、商品等等,我们只需要打开扫一扫,对准要识别的动物,稍微等待几秒即可,并且识别出来的动物介绍可以分享给好友。

5c096f8c0ee14bc2b1de4e61a77e523d.jpeg

动物识别软件二:掌上识别王

掌上识别王是一款内置多种识别工具的软件,它具有动物、数字、图片、植物、表格、水果等工具。这款软件除了以上的识别功能,还拥有二维码生成、PDF转其他、文本翻译、图片压缩、文件扫描、钢管计数、高度测量、指南针等多种功能。

5681515d74f9855f9679d995566cec1a.jpeg

这款软件的“动物识别”功能,支持单张或者多张拍摄,并且识别速度很快,准确率也高,识别后的动物介绍可以复制保存下来。

b0a677b18270c0983ec674888ed9fcca.jpeg

动物识别软件三:相机

相机是我们用来拍摄的软件,它可以拍视频、夜景、慢动作、人像、AI证件照等等,其实这款软件还可以拍照翻译、扫一扫识物、文档扫描、购物识别、扫描二维码等等,它“识物”的功能可以从相册导入也可以直接对着动物识别,不过识别结果不能进行复制。

7de3251d23f67c60a749dfa1ebce598f.jpeg

以上就是关于野生动物识别软件有哪些的全部内容啦,小伙伴们如果有其他识别动物的软件要分享,可以在评论区留言哦!

### 使用深度学习进行野生动物识别的研究论文 保护和监测野生动物种类对于生态环境的可持续发展至关重要。传统的方法受限于专业知识需求和高成本的人力投入,而基于深度学习的技术提供了更高效的解决方案[^1]。 #### 研究论文 一篇值得关注的研究是《基于大比例圈养大熊猫图像的大熊猫识别研究》,该研究表明利用卷积神经网络可以有效提高个体识别精度,并且能够处理不同光照条件下的图片差异问题[^3]。此外,《西北大学发布猴脸识别论文》也展示了如何构建针对特定物种的脸部特征提取模型并应用于实际场景中[^2]。 ### 教程资源 为了帮助开发者快速上手,在线课程如“2024年 课程设计 机器学习&深度学习实战案例”,不仅涵盖了理论基础还包含了具体的应用实例讲解,特别是有关目标检测框架YOLOv5的部分非常实用,适合希望深入理解这一领域的朋友探索更多可能性[^4]。 ```python import torch from models.experimental import attempt_load from utils.general import non_max_suppression, scale_coords from utils.datasets import letterbox def load_model(weights_path='yolov5s.pt'): device = 'cuda' if torch.cuda.is_available() else 'cpu' model = attempt_load(weights_path, map_location=device) return model.eval() model = load_model() img_size = 640 conf_thres = 0.25 iou_thres = 0.45 # 假设有一个输入图像 img img = ... # 加载一张测试图片 img = letterbox(img, new_shape=img_size)[0] imgs = [img] pred = model(imgs, size=img_size) det = pred[0] det = non_max_suppression(det, conf_thres, iou_thres) if det is not None and len(det): for *xyxy, conf, cls in reversed(det): label = f'{names[int(cls)]} {conf:.2f}' plot_one_box(xyxy, im0, label=label, color=colors(int(cls)), line_thickness=3) ``` 这段代码片段展示了一个简单的YOLOv5推理过程,可用于野生动物或其他物体的目标检测任务。当然,这只是一个起点;要将其应用于具体的野生动物识别项目还需要进一步调整参数以及收集足够的训练样本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值