检索增强生成(RAG):提升大型语言模型性能的框架

大型语言模型(LLM)在理解和生成语言方面取得了显著成就,然而,它们在某些方面存在局限。首先,LLM在训练时使用的数据集可能会过时,无法反映最新信息或趋势。其次,LLM在处理长篇文本时受到上下文窗口的限制,可能无法提供准确或全面的回答。这些限制凸显了在某些应用场景中提升LLM性能的必要性。

2a0e30ae7b92d59c01583f002ed76fa7.jpeg

RAG:检索增强生成

检索增强生成(RAG)是一种结合了检索和生成技术的框架,旨在增强大型语言模型(LLM)的性能。RAG通过从外部知识库中检索事实来为LLM提供基础,确保生成的信息基于准确和最新的数据。

RAG的工作原理

RAG的工作原理包括三个关键步骤:

检索相关信息:首先,从指定的外部源检索与原始输入提示相关的信息。这可以是从互联网、知识图谱或其他数据源中获取的信息。

增强提示:接着,将检索到的信息与原始输入提示结合,形成增强后的提示。这个增强后的提示将包含来自外部知识库的信息,为LLM提供更全面和准确的背景知识。

生成回答:最后,使用LLM和增强后的提示生成回答。LLM可以利用这些额外的信息来提供更准确和全面的回答,从而弥补了其在处理长篇文本和需要最新信息时的局限性。

b03b7aaa2a01135c137258f9692d1f46.jpeg

RAG的应用和优势

RAG的结合方法能够有效应对LLM训练数据过时和上下文理解有限的问题,从而在各种自然语言处理(NLP)任务中实现领先水平的性能。RAG在问答系统、摘要生成、信息检索等领域展现出了巨大潜力。

在问答系统中,RAG可以利用外部知识库中的信息来支持LLM生成更准确和全面的答案,特别是对于需要最新信息或广泛背景知识的问题。在摘要生成任务中,RAG可以帮助LLM更好地理解和总结长篇文本,提高摘要的质量和准确性。在信息检索方面,RAG可以为LLM提供更准确和全面的信息基础,改善搜索结果的质量和相关性。

结语

e750a6dfb0380eb06623dc51532e243e.jpeg

RAG作为一种结合了检索和生成技术的框架,为大型语言模型(LLM)的性能提供了显著提升。通过从外部知识库中检索信息并将其结合到LLM的生成过程中,RAG弥补了LLM在训练数据过时和上下文理解有限方面的局限性,为各种NLP任务的实现提供了有力支持。随着对自然语言处理应用需求的不断增长,RAG的潜力和应用范围将继续扩大,为语言模型技术的发展带来新的可能性和机遇。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值