【自学笔记】过拟合与正则化

过拟合

  分类任务的本质其实是找到边界,将不同类型的数据区分开,之前我们做的是尽量让这个边界更贴近每一个数据点,达到拟合的作用。
  然而,极端数据的存在或要求模型的特征数过多,会导致过拟合现象的出现。它会导致模型在训练集表现优异,但是在测试集准确率不高,这显然不是我们想要的。

在这里插入图片描述

术语“偏置(Bias)”和“方差(Variance)”

  偏置描述了学习算法的期望预测与真实结果之间的偏差。高偏置欠拟合成正比。
  方差表示模型预测结果的波动程度,即模型在不同训练集上的预测值的变化程度。高方差过拟合成正比。

偏置-方差权衡(Bias-Variance Tradeoff)

  要控制模型的偏置和方差,避免欠拟合和过拟合的出现。

正则化

  正则化的本质是引入额外信息(偏置)来惩罚极端的参数值。
  常见的L1,L2正则化就是在代价函数末尾加上关于w的式子,使w过大时代价函数也会过大。

L1正则化

J ( w ⃗ ) = J 0 ( w ⃗ ) + λ ∑ j = 1 m ∣ w j ∣ J(\vec{w}) = J_{0}(\vec{w}) + \lambda\sum_{j=1}^{m}|w_{j}| J(w )=J0(w )+λj=1mwj
其中 J 0 J_{0} J0是原代价函数, λ \lambda λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值