过拟合
分类任务的本质其实是找到边界,将不同类型的数据区分开,之前我们做的是尽量让这个边界更贴近每一个数据点,达到拟合的作用。
然而,极端数据的存在或要求模型的特征数过多,会导致过拟合现象的出现。它会导致模型在训练集表现优异,但是在测试集准确率不高,这显然不是我们想要的。
术语“偏置(Bias)”和“方差(Variance)”
偏置描述了学习算法的期望预测与真实结果之间的偏差。高偏置与欠拟合成正比。
方差表示模型预测结果的波动程度,即模型在不同训练集上的预测值的变化程度。高方差与过拟合成正比。
偏置-方差权衡(Bias-Variance Tradeoff)
要控制模型的偏置和方差,避免欠拟合和过拟合的出现。
正则化
正则化的本质是引入额外信息(偏置)来惩罚极端的参数值。
常见的L1,L2正则化就是在代价函数末尾加上关于w的式子,使w过大时代价函数也会过大。
L1正则化
J ( w ⃗ ) = J 0 ( w ⃗ ) + λ ∑ j = 1 m ∣ w j ∣ J(\vec{w}) = J_{0}(\vec{w}) + \lambda\sum_{j=1}^{m}|w_{j}| J(w)=J0(w)+λ∑j=1m∣wj∣
其中 J 0 J_{0} J0是原代价函数, λ \lambda λ为