pandas小技巧---------.loc、.iloc、.at、.iat的区别,.get_value(x,y)也可以获取某个值

1、.loc与.iloc、.at与.iat区别结论:

  • .loc与.iloc区别:.loc通过标签索引,不能使用位置索引;.iloc通过位置索引,不能通过标签索引
  • .loc与.iloc相同:都可获取多行或多列或多行多列或单个值
  • .at与.iat区别:同.loc与.iloc区别,.at通过标签获取单个值,.iat通过位置索引获取单个值
  • .at与.iat相同:只能获取单个值,不能获取多个值。这也是与.loc和.iloc的区别
  • 换句话说,.loc与.iloc函数功能包含.at与.iat的函数功能,.at与.iat访问数据的速度更快

2、举例说明:

  • loc
from pandas import Series,DataFrame
import pandas as pd
import numpy as np
df1=DataFrame(np.random.randint(0,10,(4,4)),index=['haha','dada','pipi','keke'],columns=['a','b','c','d'])
print(df1)
#使用loc获取第二行第三列的值
print('使用loc获取第二行第三列的值:',df1.loc['dada','c'])
#若使用位置索引,会报错,错误的演示:print(df1.loc[1,2])

在这里插入图片描述

#使用loc获取第三行的值
print(df1.loc['pipi'])
》结果
a    7
b    3
c    9
d    8

#使用loc获取第二三列的数据
print(df1.loc[:,['b','c']])
》结果
      b  c
haha  3  9
dada  7  4
pipi  3  9
keke  2  6

#使用loc获取第一二行及第三四列交叉的数据
print(df1.loc[['haha','pipi'],['c','d']])
》结果
      c  d
haha  9  3
pipi  9  8
  • iloc
#使用iloc同理
#iloc获取第二行的数据
print(df1.iloc[1])
》结果
a    9
b    7
c    4
d    9
Name: dada, dtype: int32


#iloc获取第二列的数据
print(df1.iloc[:,[1]])
》结果
      b
haha  3
dada  7
pipi  3
keke  2
  • .at及.iat
#.at获取第二行第三列的值
print(df1.at['dada','c'])
》结果
4

#.iat获取第二行第三列的值
print(df1.iat[1,2])
》结果
4

3、.get_value()获取某个值

#使用get_value获取某个值,可以得到结果但是会告警,建议使用.at
print(df1.get_value('dada','c'))
》结果
4
#FutureWarning: get_value is deprecated and will be removed in a future release. Please use .at[] or .iat[] accessors instead print(df1.get_value('dada','c'))
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页