自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(268)
  • 资源 (1)

原创 手把手用keras分类mnist数据集

实战流程获得数据,并将数据处理成合适的格式按照自己的设计搭建神经网络设定合适的参数训练神经网络在测试集上评价训练效果一、认识mnist数据集from keras.utils import to_categoricalfrom keras import models, layers, regularizersfrom keras.optimizers import RMSprop...

2020-04-29 19:11:44 2613 3

原创 分门别类刷PAT甲级

\quad博主正在准备PAT考试中,已经刷完一次甲级题,现将PAT155道甲级考试题分门别类罗列出来,再刷一次,这样刷能让自己对每种类型的题有一个综合的认识,进一步提升。欢迎大家加我QQ:1613511883一起探讨一、模拟题1、字符串处理2、模拟3、进制转换4、图形输出5、查找元素...

2019-08-19 17:25:05 1363

原创 社区发现算法之——Louvain

1、什么是社区如果一张图是对一片区域的描述的话,我们将这张图划分为很多个子图。当子图之内满足关联性尽可能大,而子图之间关联性尽可能低时,这样的子图我们可以称之为一个社区。2、社区发现算法及评价标准社区发现算法有很多,例如LPA,HANP,SLPA以及我们今天的主人公——Louvain。不同的算法划分社区的效果不尽相同。那么,如何评价这些算法孰优孰劣呢?用模块度modularity来衡量。模...

2018-10-25 09:13:39 8724 115

原创 算法系列第三讲——位运算,离散化和区间合并

一、位运算取出n的二进制的第k位:n >> k & 1返回n的最后一位1:lowbit(n) = n & -n\quad根据上面的操作,我们就可以得到三种计算一个数n的二进制中1的个数:int cnt1(int n){ int ret = 0; for(int i = 0; i < 31; i ++ ) if(n >> i & 1 == 1) ret ++ ; return ret;}int c

2020-09-25 21:21:25 10

原创 算法系列第二讲——高精度,前缀和与差分

内容摘要高精度加减乘除一维和二维前缀和一维和二维差分一、高精度1、加法2、减法3、乘法除法二、前缀和三、差分\quad差分是前缀和的逆运算,已知数组a[],构造一个差分数组b[],使得a[]是b[]的前缀和,即a[i]=b[1]+b[2]+...+b[i]。给区间[l, r]中的每个数加上c等价于:b[l] += c, b[r + 1] -= c,运行若干次这样的运算后对b[]进行累加可以得到经过若干次加c操作后的a[]。...

2020-09-23 09:08:24 8

原创 算法系列第一讲——排序和二分

内容摘要快速排序归并排序整数二分浮点数二分一、排序1、快速排序输入一个未排序的数组q[],步骤如下:1.确定分界点x,x可以是q[l],q[r],q[(l+r)/2]2.调整区间,使得左边区间的数小于等于x,右边区间的数大于等于x。该过程可以用两个指针i,j分别指向区间开头和区间结尾,不断右移i直到找到第一个大于等于x的数的位置,不断左移j直到找到第一个小于等于x的位置,随后交换i,j对应的两个数3.递归处理左右两个区间2、归并排序输入一个未排序的数组q[],步骤如下:1

2020-09-22 16:04:37 12

原创 现代数字信号处理第九章——盲信号处理

在实际的许多信号处理场合,信号处理所需的各种信息并不全部已知,这时的信号处理称为盲信号处理。 本章主要内容:盲信号处理基本概念Bussgang盲均衡原理SIMO信道盲辨识算法;子空间方法和互关系方法盲波束形成算法一、盲信号处理基本概念系统辨识:根据系统输出信号(观测数据),求解系统输入输出关系盲系统辨识:不知道系统输入信号,只知道系统输出信号时的系统辨识盲解卷积:仅知道系统输出信号,不知道系统的冲激响应情况下的解卷积信道均衡:纠正(或补偿)传输信道的不 平坦幅频特性,使整个传输信

2020-08-20 15:05:43 191

原创 现代数字通信第八章——阵列信号处理与空域滤波

主要内容:阵列信号模型空间谱估计空域滤波一、阵列接收信号模型1、均匀线阵\quadK个窄带信号分别从θ1,θ2,⋯ ,θk\theta_1,\theta_2,\cdots,\theta_kθ1​,θ2​,⋯,θk​方向,入射到间隔为d的均匀线阵,则接收到的信号向量为x(n)=As(n)+v(n)x(n)=As(n)+v(n)x(n)=As(n)+v(n)第k个信源的方向向量为α(θk)=[1,e−jϕk,⋯ ,e−j(M−1)ϕk]\alpha(\theta_k)=[1,e^{-j\

2020-08-19 21:28:16 202

原创 现代数字信号处理第七章——卡尔曼滤波

本章讨论的问题如下:新息过程卡尔曼滤波算法和性能卡尔曼滤波应用一、新息过程\quad线性预测器在最小均方误差意义下的预测误差e(n)e(n)e(n)称为新息过程,新息过程α(n)=d(n)−d^(n)=z(n)−wHzn−1\alpha(n)=d(n)-\hat{d}(n)=z(n)-w^Hz_{n-1}α(n)=d(n)−d^(n)=z(n)−wHzn−1​。\quad根据维纳滤波正交原理:估计误差与输入信号向量正交,α(n)与z(n)\alpha(n)与z(n)α(n)与z(n)正交。

2020-08-19 15:46:20 188

原创 现代数字信号处理第六章——最小二乘理论和算法

本章核心:利用最小二乘估计及算法,根据有限个数的观测数据寻求滤波器的最优值。内容分为四部分:最小二乘估计原理基于奇异值分解的最小二乘法求解基于最小二乘的FBLP谱估计最小二乘的两种递归算法:RLS和QR-RLS一、最小二乘理论1、线性方程组Ax=bAx=bAx=b解的形式A可逆,x=A−1bx=A^{-1}bx=A−1bA列满秩,独立方程数大于未知量数,方程有最小二乘解,x^LS=(AHA)−1AHb\hat{x}_{LS}=(A^HA)^{-1}A^Hbx^LS​=(AHA)−1AH

2020-08-18 21:42:24 194

原创 现代数字信号处理第五章——维纳滤波在信号处理中的应用

主要内容线性滤波器及其与AR模型的互逆关系前后向线性预测;格型滤波器;Burg算法信道均衡一、线性预测\quad如下图所示包含M个抽头的滤波器,用u(n−1),u(n−2),⋯ ,u(n−M)u(n-1),u(n-2),\cdots,u(n-M)u(n−1),u(n−2),⋯,u(n−M)来预测u(n)u(n)u(n),称为M阶线性预测LP(M)LP(M)LP(M)。输入向量:u(n)=[u(n−1),u(n−2),⋯ ,u(n−M)]Tu(n)=[u(n-1),u(n-2),\cdot

2020-08-18 18:42:12 184

原创 现代数字信号处理——维纳滤波原理及自适应算法

一、维纳滤波器基本理论1、自适应横向滤波器wi∗w_i^*wi∗​:滤波器权系数w=[w0,w1,⋯ ,wM−1]w=[w_0,w_1,\cdots,w_{M-1}]w=[w0​,w1​,⋯,wM−1​]:滤波器权向量d(n)d(n)d(n):期望响应d^(n)=∑i=0M−1wi∗u(n−i)=wHu(n)=uT(n)w∗\hat{d}(n)=\sum_{i=0}^{M-1}w_i^*u(n-i)=w^Hu(n)=u^T(n)w^*d^(n)=∑i=0M−1​wi∗​u(n−i)=wHu(n

2020-08-17 20:57:44 196

原创 数字通信七八章——信道编码

一、线性分组码(n,k)码:循环码,线性分组码的一种线性分组码的译码:1.软判决译码:不进行量化,直接对滤波器输出进行译码2.硬判决译码:先将模拟样值量化,然后用数字方式实现译码二、卷积码三、级联码、带交织的并行级联卷积码 —— Turbo码四、网格编码调制TCM...

2020-08-17 09:03:36 175

原创 现代数字信号处理——功率谱和信号频率估计

如何使用随机过程u(n)的Nu(n)的Nu(n)的N个观测数据uN(0),uN(1),⋯ ,uN(N−1)u_N(0),u_N(1),\cdots,u_N(N-1)uN​(0),uN​(1),⋯,uN​(N−1)估计出随机过程的功率谱S(w)S(w)S(w)。估计方法分为三个流派:1.经典功率谱估计2.参数模型法估计3.基于相关矩阵特征分解的信号频率估计一、经典功率谱估计\quad基于传统傅里叶变换的思想,有BT法和周期图法及其相关改进。1、BT法\quad已知N个观测值uN(n)u_N(

2020-08-16 23:59:44 217

原创 数字通信第六章——信道模型和信道容量

一、信道模型描述信道常用的三个参数:输入X;输出Y;输入与输出间的条件概率P(yi∣xi)P(y_i|x_i)P(yi​∣xi​)。如果P(y∣x)=∏i=1mP(yi∣xi)P(y|x)=\prod_{i=1}^mP(y_i|x_i)P(y∣x)=∏i=1m​P(yi​∣xi​),则该信道无记忆。接下来描述四种信道模型:1、二进制对称信道BSC2、离散无记忆信道DMC\quad更广义的离散输入输出的信道。输入是M元符号,输出是Q元符号。无记忆。条件概率可以写成矩阵形式。3、离散输入、连续输出信

2020-08-13 20:46:35 190

原创 数字通信第五章——载波与符号同步

为什么需要进行符号同步?接收机同步采样的需要,必须从接收信号中导出符号定时。为什么需要进行载波同步?相干检测的需要,接收机必须估计载波相位的偏移。一、信号参数估计两个参数:传播延迟τ\tauτ和载波相位ϕ=−2πfcτ\phi=-2\pi f_c \tauϕ=−2πfc​τ。令θ={ϕ,τ}\theta=\{\phi,\tau\}θ={ϕ,τ},则估计两个基本准则:1.MAP准则2.最大似然准则ML二者在P(θ)P(\theta)P(θ)均匀分布时相等,故而用最大似然准则即可。基于接收向量r

2020-08-13 19:35:13 197

原创 数字通信第四章——数字信号传输方法比较

1.给定错误概率,比较所需的信噪比2.给定传输速率R,比较带宽W3.给定错误概率,比较带宽效率R/W与SNR的关系\quad功率效率准则:达到某个错误概率(通常Pe=10-5)所需的SNR,所需的SNR低,则系统的功率效率高。\quad带宽效率准则:信号传输额比特率与带宽的比值r=R/Wr=R/Wr=R/W,r大带宽效率越高。带宽与维度的关系信号集:M个信号,每个的持续时间(信号传输间隔)Ts信号带宽:W信号维度:N=2WTsN=2WT_sN=2WTs​带宽效率:r=RW=2log2M.

2020-08-13 15:46:50 185

原创 数字通信第四章——不确定情况下的最佳检测:非相干检测

实际中,使用相干解调存在问题:接收信号的载波相位具有不确定性问题:在不知道载波相位的情况下,并且也不必对该相位值进行估计时,最佳接收机的形式如何设计?一、二进制信号的最佳非相干检测判决规则:最大后验概率二进制正交信号的特例:二进制FSK信号,对于FSK信号的包络或平方律检测(非相干检测),信号正交性所要求的最小频率间隔为Δf=1T\Delta f = \frac{1}{T}Δf=T1​,它是相位相干检测要求间隔的两倍;M元正交信号,其非相干检测与2元的一样,也是包络检波或平方律检波错误概

2020-08-13 10:53:54 193

原创 数字通信第四章——功限信号的最佳检测和错误概率

功限信号类型:正交信号,双正交信号,单纯信号等特点:高维星座表征,功率效率高,带宽效率低一、正交信号信号矢量最大相关准则判决平均比特错误概率Pb=2k−12k−1Pe≈12PeP_b=\frac{2^{k-1}}{2^k-1}P_e≈\frac{1}{2}P_ePb​=2k−12k−1​Pe​≈21​Pe​,按照概率论排列组合推出来为了达到给定的比特错误概率,增加波形个数M可以减少对比特SNR的要求香农极限:在k→无穷(即M=2k→无穷)k→无穷(即M=2k →无穷)k→无穷(即M=2k→

2020-08-13 09:57:57 186

原创 数字通信第四章——带限信号的最佳检测和错误概率

信号类型:ASK,PSK,QAM主要特征:低带宽需求,传输方式具有低维度(1,2维),与发送信号数目无关,功率效率随消息数的增加而减少。错误概率有两种1.误符号率:PeP_ePe​;2.误比特率:PbP_bPb​。一、ASK信号M个一维信号点任意两个相邻点间最小距离为dmin=12log2MM2−1ϵbavgd_{min}=\sqrt{\frac{12log_2M}{M^2-1}\epsilon_{bavg}}dmin​=M2−112log2​M​ϵbavg​​星座图中有两种类型的点,M-2

2020-08-13 09:06:54 192

原创 计算复杂性第十章——复杂性高级专题

\quad本章主要内容包括近似算法、概率算法、交互式证明系统、并行计算和密码学。一、近似算法\quad某些NPC问题我们可以用多项式时间得到其近似解。例如最小顶点覆盖问题,我们就可以用如下算法得到一个2倍近似的解:对于图G,我们重复以下操作直至G中所有的边都与标记的边相邻:1.在G中找出一条不与任何有标记的边相邻的边;2.给这条边做上标记。最后输出所有标记的边的顶点即可。\quad上述算法给出的顶点覆盖的规模不超过最小顶点覆盖的2倍,证明如下:1.记H是有标记的边的集合,X是输出的顶点集合,Y是最

2020-08-12 14:38:51 198

原创 计算复杂性第九章——难解性

\quad某些计算问题在理论上可解,但是需要耗费大量时间和空间,这样的问题称为难解的,比如NPC问题。一、层次定理\quad直观感觉:给图灵机更多的时间或空间就能扩大它所能求解的问题类。例如图灵机在O(n3)O(n^3)O(n3)时间内能比其在O(n2)O(n^2)O(n2)时间内判定更多的语言。层次定理可以证明其正确性:时空界限较大的类比较小的类包含更多的语言。空间层次定理\quad对于任何空间可构造函数fff,存在语言A,在空间O(f(n))O(f(n))O(f(n))内可判定,但不能在o(f(

2020-08-12 13:08:28 196

原创 计算复杂性前三章——图灵机等基础知识

一、有穷自动机\quad有穷自动机是能力和资源极其有限的计算机模型。描述一个自动机需要知道它一共有哪些状态,状态之间如何转换(状态之间发生转化的条件就是有新的输入字母),它的起始状态和接受状态是什么,如下图所示:\quad有穷自动机是一个5元组(Q,∑,δ,q0,F)(Q,\sum,\delta,q_0,F)(Q,∑,δ,q0​,F),其中1.QQQ是一个有穷集合,称为状态集2.∑\sum∑是一个有穷集合,称为字母表3.δ:Q∗∑−>Q\delta:Q*\sum->Qδ:Q∗∑−&

2020-08-11 09:18:31 196

原创 计算复杂性第八章——空间复杂性

\quad本章使用图灵机模型来度量算法消耗的空间。\quad定义:令M是一个在所有输入上都停机的确定型图灵机,M的空间复杂度f(n)f(n)f(n)是M在任何长度为n的输入上扫描带子方格的最大数。若M的空间复杂度为f(n)f(n)f(n),则称M在空间f(n)f(n)f(n)内运行。\quad两个空间复杂性类:SPACE(f(n))={L∣L是被O(f(n))空间的确定型图灵机判定的语言}SPACE(f(n))=\{L|L是被O(f(n))空间的确定型图灵机判定的语言\}SPACE(f(n))={L

2020-08-05 19:56:53 218

原创 计算复杂性第七章——时间复杂性

一、度量复杂性语言:A={0k1k∣k≥0}A=\{0^k1^k | k\ge 0\}A={0k1k∣k≥0},显然该语言可判定M1M1M1:单带图灵机M2M2M2:更快的单带图灵机M3M3M3:双带图灵机时间复杂度定义:令M是一个在所有输入上都停机的确定型图灵机,f(n)是M在所有长度为n的输入上运行时所经过的最大步数,若f(n)是M的运行时间,则称M在时间f(n)内运行,M是f(n)时间图灵机,n是输入长度。时间复杂性类定义:时间复杂度类TIME(t(n))TIME(t(n))TIME(

2020-08-05 15:48:22 243

原创 测试

#include <iostream>#include <vector>#include <unordered_map>#include <algorithm>using namespace std;struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {}

2020-07-29 15:28:32 226

原创 数字通信第四章——波形解调与最佳检测接收

\quad输入s(t)s(t)s(t)经过AWGN信道后得到r(t)r(t)r(t),即r(t)=sm(t)+n(t)r(t)=s_m(t)+n(t)r(t)=sm​(t)+n(t)。\quad将sm(t)s_m(t)sm​(t)进行施密特正交化,可以写成sm(t)=∑j=1Nsmjϕj(t)s_m(t)=\sum_{j=1}^Ns_{mj}\phi_j(t)sm​(t)=∑j=1N​smj​ϕj​(t),这样就可以得到波形的矢量表达式。噪声n(t)n(t)n(t)不能使用ϕj(t)\phi_j(t)ϕj

2020-07-25 10:46:48 215

原创 数字通信第三章——有记忆信号传输方式

一、什么是有记忆调制\quad连续发送的信号间具有相关性,引入相关性能使得发送信号频谱与信道的频谱特征相适应。可以通过编码来引入相关性。有记忆调制分为有记忆线性调制和有记忆非线性调制。二、有记忆线性调制\quad三种基带信号:NRZ(非归零):二进制1用幅度为A的矩形脉冲表示,0用幅度为-A的矩形脉冲,没有引入记忆NRZI(非归零反转):也叫差分编码,发送1时幅度电平发生转换,发送0时与上一时刻一样,引入了记忆延迟调制(密勒码)\quad转移矩阵:由信号间转移概率构成的矩阵。转移概率PijP

2020-07-18 09:06:28 274

原创 使用互信息来衡量两个单词间的相关程度

\quad两个随机变量X,YX,YX,Y的互信息为I(X;Y)=∑x∈X,y∈Yp(x,y)logp(x,y)p(x)p(y)I(X;Y)=\sum_{x\in X, y\in Y}p(x,y)log\frac{p(x,y)}{p(x)p(y)}I(X;Y)=x∈X,y∈Y∑​p(x,y)logp(x)p(y)p(x,y)​。互信息可以衡量两个变量之间的相似程度。如果我们要衡量某个数据集中任意两个单词x,yx,yx,y的关联程度,可以这样计算I(x;y)=p(x,y)logp(x,y)p(x)p(y)I(x

2020-07-17 16:02:44 337

原创 数字通信第三章——多维信号传输

\quad多维信号:维数高于二维,在时域、频域或者在两域上增加维数。一、正交信号\quad一个等能量的符号集sm(t)s_m(t)sm​(t),且两两正交,其标准正交基为ϕj(t)=sj(t)ε\phi_j(t)=\frac{s_j(t)}{\sqrt{\varepsilon}}ϕj​(t)=ε​sj​(t)​,矢量表达式如下:可得信号点间欧氏距离均为dmn=2εd_{mn}=\sqrt{2\varepsilon}dmn​=2ε​,最小距离为dmin=2εd_{min}=\sqrt{2\vare

2020-07-16 16:35:28 278

原创 数字通信第三章——无记忆调制方法

\quad用来在信道上传输信息的波形sm(t)s_m(t)sm​(t)可以是任意形式,然而,这些波形的差别在于幅度、相位或频率,由此产生不同的数字调制方法。假设输入二进制数字序列的速率为Rbits/sR bits/sRbits/s。一、脉冲幅度调制PAM\quad特点:用不同的载波幅度来承载信号。基带PAM信号波形:sm(t)=Amp(t)(1≤m≤M)s_m(t)=A_mp(t)(1\le m\le M)sm​(t)=Am​p(t)(1≤m≤M)。p(t)p(t)p(t)是持续时间为TTT的脉冲

2020-07-15 21:09:15 295

原创 数字通信第三章——数字调制方法概念

一、为什么要调制传输的二进制流必须经过变换,适应在给定的信道上传输。信号传输时,信道的自然属性会带来各种损伤(噪声,衰减,失真,干扰……)\quad变换后的信号满足:1、能表示二进制数据,能方便地从中恢复出数据流;2、能匹配信道的特征(带宽适配,抗损伤)。\quad数字调制:将数字序列映射为一组相应的信号波形。\quad调制的分类:无记忆调制和有记忆调制线性调制和非线性调制二进制调制和多进制调制调制的常用概念\quad调制器将kkk个比特映射成相应的信号波形集sm(t)(1≤m≤

2020-07-15 14:58:14 299

原创 数字通信第二章——确定与随机信号分析

一、带通和低通信号的表示1、带通信号及其调制\quad带通信号是一种实窄带高频信号,其频谱集中在某个频率(+−f0)(+-f_0)(+−f0​)附近,且频谱宽度远小于f0f_0f0​的信号。对于这类信号,一般有两种调制方法:双边带调制DSB:传输信号的信道带宽限制在以载波为中心的一个频段上。单边带调制SSB:传输信号的信道带宽限制在邻近载波的频段上。\quad可以将带通信号简化为等效低通信号,这样可以大大简化带通信号的处理。2、x(t)的全部信息都包含在正(或负)频域中\quad由于x(

2020-07-09 19:54:09 553

原创 ggg

一、填空题1、生成树计数\quad设D(G)D(G)D(G)为图的度对角矩阵,A(G)A(G)A(G)为图的领接矩阵,则C=D(G)−A(G)C=D(G)-A(G)C=D(G)−A(G)的任意一个余子式的值即为图GGG的生成树个数。CCC也成为拉式矩阵。举个例子:\quad则上图生成树个数为3。\quad完全图knk_nkn​的生成树个数为nn−2n^{n-2}nn−2。\quad若...

2020-07-09 15:26:46 523

原创 python之常用的timer装饰器

\quad在实际写程序时,很多时候我们有这样的需求,需要统计某个函数运行时间。我们可以使用装饰器来很方便的完成这个任务。接下来的程序提供的装饰器可以用于修饰类和方法,如下所示:def timer(func): def func_wrapper(*args, **kwargs): from time import time time_start = time() result = func(*args, **kwargs) time_e

2020-07-08 16:04:23 611

原创 python类运算符重载——重写print和sort

\quadpython提供了很多内建函数,可以供我们自定义加减乘除、打印、迭代等方法。这里我给出最常见的两个方法:重写__str__以完成打印输出重写__lt__,即<符号以实现在外部可直接调用sorted函数按照我们自定义的排序符号进行排序\quad下面给出示例:class Event(object): def __init__(self, time, location, describe): self.time = time self.locat

2020-07-08 15:59:15 708

原创 猿辅导技术岗算法题总结

\quad现在大多数公司面试都要手撕算法题,这些是应试的东西,大家一定要提前准备,如果不准备肯定很难通过。如下是去年秋招猿辅导的算法题总结,供大家参考。1.栈排序2.链表实现队列3.最长连续递增序列4.最长不连续序列5.二维数组回行打印6.无序数组构建一棵二叉排序树7.一个数组实现两个栈8.二叉树宽度9.二叉树是否对称10.链表m到n反转11.一个n位数,现在可以删除其中任意k位,使得剩下的数最小12.实现有符号大数链表加法,靠近头结点位置为高位13.字符串横向改纵向14.八皇后

2020-07-02 11:08:13 800

原创 python3实现无限次翻译

\quad本博客会给读者一个非常好用的翻译接口,主要是针对大量文本翻译,可以突破翻译限制(指的是一个IP可以连续翻译,不是指一次翻译很多文本),笔者亲测翻译数千条推特无压力。\quad本翻译脚本是使用的有道翻译,需要你提前下载安装python3的request、json和faker库。faker库主要用于产生随机的"user_agent"。最终程序如下:from urllib import request, parseimport jsonfrom faker import Fakerclass

2020-06-24 11:06:13 755 3

原创 快速计算数组中前n个数的均值和方差

一、问题背景\quad给你一个数组x=[1,2,3,6]x=[1,2,3,6]x=[1,2,3,6],如何快速计算其前缀数组x[0⋯n]x[0\cdots n]x[0⋯n]的均值和方差,即需要返回均值数组m=[1,1.5,2,3]m=[1,1.5,2,3]m=[1,1.5,2,3],m[2]=2m[2]=2m[2]=2表示数组x[0⋯2]=[1,2,3]x[0 \cdots 2]=[1,2,3]x[0⋯2]=[1,2,3]的均值为2;同时返回方差数组S=[0,0.25,23,3.5]]S=[0, 0.25

2020-06-20 14:44:35 632

原创 Leetcode第一周

解析:做这类括号题,我们需要知道一个括号序列是否合法的两个条件:括号序列中左括号和右括号数目相同括号序列的任意前缀中左括号数目大于等于右括号数目依据上述两条特性,我们就可以得到该题解法,即记录下当前生成的序列中左括号数目lc和右括号数目’rc’,如果lc==n && rc == n表明该序列已是合法序列;如果lc<n则可以加个左括号,如果rc<n且rc<lc则可以加右括号。程序如下:class Solution {public: vector<.

2020-06-16 21:06:43 532

推特事件检测

事件检测的大牛文章,IEEE影响因子10分以上,可供下载。

2018-10-25

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除