\qquad
给定数n,
n
<
=
2
31
−
1
n<=2^{31}-1
n<=231−1,存在一组数,其约数个数为1536,是int范围内约数最多的情况。
1745944200
=
2
3
∗
3
3
∗
5
2
∗
7
∗
11
∗
13
∗
17
∗
19
1745944200=2^3 * 3^3 * 5^2 * 7 * 11 * 13 * 17 * 19
1745944200=23∗33∗52∗7∗11∗13∗17∗19
2113511400
=
2
3
∗
3
3
∗
5
2
∗
7
∗
11
∗
13
∗
17
∗
23
2113511400=2^3 * 3^3 * 5^2 * 7 * 11 * 13 * 17 * 23
2113511400=23∗33∗52∗7∗11∗13∗17∗23
\qquad
约数个数的计算可以先将数n进行质因数分解,写成
n
=
a
1
p
1
∗
a
2
p
2
∗
⋯
∗
a
n
p
n
n=a_1^{p_1}*a_2^{p_2}*\cdots *a_n^{p_n}
n=a1p1∗a2p2∗⋯∗anpn的形式,则
n
n
n的约数个数为
(
p
1
+
1
)
∗
(
p
2
+
1
)
∗
⋯
∗
(
p
n
+
1
)
(p_1+1)*(p_2+1)*\cdots*(p_n+1)
(p1+1)∗(p2+1)∗⋯∗(pn+1)。例如,1745944200的约数个数为
(
3
+
1
)
∗
(
3
+
1
)
∗
(
2
+
1
)
∗
2
∗
2
∗
2
∗
2
∗
2
=
1536
(3+1)*(3+1)*(2+1)*2*2*2*2*2=1536
(3+1)∗(3+1)∗(2+1)∗2∗2∗2∗2∗2=1536