考试要求:
- 有向图的相关概念和结论
- 强连通分支和单项连通分支的求法
一、有向图概念和性质
概念:边有方向的图称为有向图
出度:以点v为始点的边的条数称为点v的出度,一个自环算一度
入度:以点v为终点的边的条数称为点v的入度,一个自环算一度
- 一个简单图有 2 m ( G ) 2^{m(G)} 2m(G)个定向图。
- ∑ d + ( v ) = ∑ d − ( v ) = m ( G ) \sum d^+(v)=\sum d^-(v)=m(G) ∑d+(v)=∑d−(v)=m(G)
- 邻接矩阵和关联矩阵的定义
二、有向图的连通性
设 D = ( V , E ) D=(V,E) D=(V,E)是有向图
- 若D的基础图是连通的,则D是弱连通图
- 若D中任意两点是单向连通的,则D是单向连通图
- 若D中任意两点双向连通,则D是强连通图
在上面三图中,D1是强连通,D2单向连通,D3弱连通。
有向图D是否是强连通图的判断方法:看D中是否存在包含D中所有顶点的回路(注意是回路不是圈)