图论——根树

一、根树概念

\quad 一棵非平凡的有向树T,如果恰有一个顶点的入度为0,而其余所有顶点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根,出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点和树根统称为分支点。
\quad 对于根树T,若每个分支点至多m个儿子,称该根树为m元根树;若每个分支点恰有m个儿子,称它为完全m元树。

二、重要定理和性质

1、在完全m元树T中,若树叶数为t , 分支点数为i , 则: ( m − 1 ) i = t − 1 (m-1)i=t-1 (m1)i=t1
证明:树边数 m ( T ) = ( i + t ) − 1 m(T) = (i+t)-1 m(T)=(i+t)1,由握手定理,可得 2 m ( T ) = 根 度 数 m + t 个 叶 子 节 点 度 数 和 t + ( i − 1 ) 个 中 间 节 点 度 数 ( i − 1 ) ( m + 1 ) = t + m + ( i − 1 ) ( m + 1 ) 2m(T)=根度数m+t个叶子节点度数和t+(i-1)个中间节点度数(i-1)(m+1)=t+m+(i-1)(m+1) 2m(T)=m+tt+(i1)(i1)(m+1)=t+m+(i1)(m+1),联立上面两等式可得结论。

三、最优二元树

\quad 设T是一棵二元树,若对所有t片树叶赋权值 w i ( 1 ≦ i ≦ t ) w_i(1≦i≦t) wi(1it),且权值为wi的树叶层数为 L ( w i ) L(w_i) L(wi),称: W ( T ) = ∑ i = 1 t w i L ( w i ) W(T)=\sum_{i=1}^t w_iL(w_i) W(T)=i=1twiL(wi)为该赋权二元树的权。而在所有赋权为 w i w_i wi的二元树中W(T)最小的二元树称为最优二元树。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值