高级算法_one.docx
高级算法_task1,内容有:随机森林算法梳理
集成学习的概念
个体学习器的概念
boosting bagging的概念、异同点
理解不同的结合策略(平均法,投票法,学习法)
随机森林的思想
随机森林的推广
随机森林的优缺点
随机森林在sklearn中的参数解释
随机森林的应用场景
卷积神经网络基础 pytorch
卷积神经网络基础
本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。
lenet.md python3
lenet 模型介绍
lenet 网络搭建
运用lenet进行图像识别-fashion-mnist数据集
卷积神经网络就是含卷积层的网络。 LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类。
进阶网络神经.md pytorch
深度卷积神经网络(AlexNet)
LeNet: 在大的真实数据集上的表现并不尽如⼈意。
1.神经网络计算复杂。
2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。
机器学习的特征提取:手工定义的特征提取函数
神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。
神经网络发展的限制:数据、硬件
文本预处理.md pytorch
文本预处理
文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:
读入文本
分词
建立字典,将每个词映射到一个唯一的索引(index)
将文本从词的序列转换为索引的序列,方便输入模型
语言模型与数据集.md
语言模型
一段自然语言文本可以看作是一个离散时间序列,给定一个长度为 T 的词的序列 w1,w2,…,wT ,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:
P(w1,w2,…,wT).
本节我们介绍基于统计的语言模型,主要是 n 元语法( n -gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。
循环神经网络.md pytorch
基于循环神经网络的语言模型,提供了从零开始的实现与简洁实现
本节介绍循环神经网络,下图展示了如何基于循环神经网络实现语言模型。我们的目的是基于当前的输入与过去的输入序列,预测序列的下一个字符。
ModernRNN.md
modernrnn
GRU/LSTM/深层RNN/双向RNN
深度循环神经网络
双向循环神经网络
长短期记忆long short-term memory :
遗忘门:控制上一时间步的记忆细胞 输入门:控制当前时间步的输入
输出门:控制从记忆细胞到隐藏状态
记忆细胞:⼀种特殊的隐藏状态的信息的流动
机器翻译.md pytorch
机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。 主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。
transformer.md
Transformer blocks:将seq2seq模型重的循环网络替换为了Transformer Blocks,该模块包含一个多头注意力层(Multi-head Attention Layers)以及两个position-wise feed-forward networks(FFN)。对于解码器来说,另一个多头注意力层被用于接受编码器的隐藏状态。
Add and norm:多头注意力层和前馈网络的输出被送到两个“add and norm”层进行处理,该层包含残差结构以及层归一化。
Position encoding:由于自注意力层并没有区分元素的顺序,所以一个位置编码层被用于向序列元素里添加位置信息。
线性回归 pytorch day1
线性回归
主要内容包括:
线性回归的基本要素
线性回归模型从零开始的实现
线性回归模型使用pytorch的简洁实现
多层感知机 python pytorch
多层感知机的基本知识
深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。
过拟合欠拟合及其解决方案 pytorch
过拟合、欠拟合及其解决方案,内容:
1. 过拟合、欠拟合的概念
2. 权重衰减
3. 丢弃法
总结
欠拟合现象:模型无法达到一个较低的误差
过拟合现象:训练误差较低但是泛化误差依然较高,二者相差较大
梯度消失,梯度爆炸.md
梯度消失、梯度爆炸以及Kaggle房价预测
梯度消失和梯度爆炸
考虑到环境因素的其他问题
Kaggle房价预测
批量归一化与残差网络.md
对输入的标准化(浅层模型)
处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。
标准化处理输入数据使各个特征的分布相近
批量归一化(深度模型)
利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。
凸优化.md python
优化与深度学习
优化与估计
尽管优化方法可以最小化深度学习中的损失函数值,但本质上优化方法达到的目标与深度学习的目标并不相同。
优化方法目标:训练集损失函数值
深度学习目标:测试集损失函数值(泛化性)
梯度下降.md pytorch
一维梯度下降
证明:沿梯度反方向移动自变量可以减小函数值
学习率
局部最小值
多维梯度下降
自适应方法
目标检测和边界框.md
锚框
目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边缘从而更准确地预测目标的真实边界框(ground-truth bounding box)。不同的模型使用的区域采样方法可能不同。这里我们介绍其中的一种方法:它以每个像素为中心生成多个大小和宽高比(aspect ratio)不同的边界框。这些边界框被称为锚框(anchor box)。我们将在后面基于锚框实践目标检测。
图像风格迁移.md pytorch
在本节中,我们将介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移(style transfer)[1]。这里我们需要两张输入图像,一张是内容图像,另一张是样式图像,我们将使用神经网络修改内容图像使其在样式上接近样式图像。图9.12中的内容图像为本书作者在西雅图郊区的雷尼尔山国家公园(Mount Rainier National Park)拍摄的风景照,而样式图像则是一副主题为秋天橡树的油画。最终输出的合成图像在保留了内容图像中物体主体形状的情况下应用了样式图像的油画笔触,同时也让整体颜色更加鲜艳。
图像分类案例1.md
现在,我们将运用在前面几节中学到的知识来参加Kaggle竞赛,该竞赛解决了CIFAR-10图像分类问题。比赛网址是https://www.kaggle.com/c/cifar-10
图像分类案例2.md
在本节中,我们将解决Kaggle竞赛中的犬种识别挑战,比赛的网址是https://www.kaggle.com/c/dog-breed-identification 在这项比赛中,我们尝试确定120种不同的狗。该比赛中使用的数据集实际上是著名的ImageNet数据集的子集。
生成对抗网络.md GAN
Generative Adversarial Networks
Throughout most of this book, we have talked about how to make predictions. In some form or another, we used deep neural networks learned mappings from data points to labels. This kind of learning is called discriminative learning, as in, we'd like to be able to discriminate between photos cats and photos of dogs. Classifiers and regressors are both examples of discriminative learning. And neural networks trained by backpropagation have upended everything we thought we knew about discriminative learning on large complicated datasets. Classification accuracies on high-res images has gone from useless to human-level (with some caveats) in just 5-6 years. We will spare you another spiel about all the other discriminative tasks where deep neural networks do astoundingly well.
Deep Convolutional Generative Adversarial Networks.md
we introduced the basic ideas behind how GANs work. We showed that they can draw samples from some simple, easy-to-sample distribution, like a uniform or normal distribution, and transform them into samples that appear to match the distribution of some dataset. And while our example of matching a 2D Gaussian distribution got the point across, it is not especially exciting.
Playing Mountain Car Using Actor-Critic Method.md
Playing Mountain Car Using Actor-Critic MethodPlaying Mountain Car Using Actor-Critic Method
海思3559a学习.md
海思3559a
海思Hi3559AV100/Hi3519AV100 NNIE深度学习模块开发与调试记录
用python 玩转数据.docx
来自《用python玩转数据》这一课程,属于笔记型文档,用作自己以后的复习和回顾
基于动态规划的强化学习.md
Dynamic Programming Based Reinforcement Learning Methods
Reinforcement Learning
Policy Iteration Learning
程序+论文.docx
来自卷积神经网络的论文的小总结,有很多瑕疵,入门级渣渣文档 pytouch的6篇论文的总结
softmax和分类模型.md
softmax和分类模型
内容包含:
softmax回归的基本概念
如何获取Fashion-MNIST数据集和读取数据
softmax回归模型的从零开始实现,实现一个对Fashion-MNIST训练集中的图像数据进行分类的模型
使用pytorch重新实现softmax回归模型
初级算法_one.docx
文档引用了很多博客和资料,由于链接太多并没有附上,请原作者见谅,本人小白,以博客作为学习记录