密码学_ECC椭圆曲线加密算法

ECC是一种基于椭圆曲线数学的公钥加密技术,提供与RSA相当的安全性但使用更短的密钥。ECDH是结合Diffie-Hellman协议的版本,用于安全的密钥交换。文章还讨论了有限域GF(p)在密码学中的应用,以及如何将椭圆曲线转化为离散的有限域以用于加密和解密过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法介绍

        椭圆加密算法(ECC)是一种公钥加密体制,最初由Koblitz和Miller两人于1985年提出,其数学基础是利用椭圆曲线上的有理点构成Abel加法群上椭圆离散对数的计算困难性。公钥密码体制根据其所依据的难题一般分为三类:大素数分解问题类、离散对数问题类、椭圆曲线类。有时也把椭圆曲线类归为离散对数类。相比RSA,ECC优势是可以使用更短的密钥,来实现与RSA相当或更高的安全,RSA加密算法也是一种非对称加密算法,在公开密钥加密和电子商业中RSA被广泛使用。常用于通讯加密,数字签名等。据研究,160位ECC加密安全性相当于1024位RSA加密,210位ECC加密安全性相当于2048位RSA加密。bitcoin以及漂亮国gov都在用。相当好,但是由于后门问题等一些原因还未大量普及。

知识概念

        椭圆曲线

        公式如下图

        a,b的取值满足

 下图为曲线的某一a,b值对应的坐标图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值