- 博客(3)
- 收藏
- 关注
原创 深度学习中的最优化算法(二)
2.动量梯度下降 由指数加权平均 Vt=βVt−1+(1−β)θt V_{t}=\beta V_{t-1}+(1-\beta)\theta_{t} Vt=βVt−1+(1−β)θt 可知 Vdw=βVdw+(1−β)dwVdb=βVdb+(1−β)dbw=w−αVdwb=b−αVdb V_{dw}=\beta V_{dw}+(1-\beta)dw\\ V_{db}=\beta V_{db}+(1-\beta)db\\ w=w-\alpha V_{dw}\\ b=b-\alpha V_{db} Vdw
2021-06-02 12:04:10 203 1
原创 深度学习中的最优化算法(一)
深度学习中的最优化算法(一) 前置:mini-batch梯度下降法 原理: 若有100万个样本,则平均分为1000份,每一份包含1000个样本,称为batch X={x1,x2,...,x1000000} X=\{x_1,x_2,...,x_{1000000}\} X={x1,x2,...,x1000000} 分为: X1={x1,x2,...,x1000},X2={x1001,x1002,...,x2000},... X^{1}=\{x_1,x_2,...,x_{1000}\},X^{2}=\{x_
2021-06-01 16:27:25 326
原创 机器学习
机器学习 对于刚入门机器学习的小白,记录一下自己想到的问题 x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target) 其中, x_train:训练集的特征值, x_test:测试集的特征值, y_train:训练集的目标值, y_test:测试集的目标值 当使用knn算法时,会有以下代码: transform = StandardScaler() # 做标准化处理 x_train = transf
2021-03-20 12:07:03 226
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人