ZJOI 2006 物流运输 bzoj1003

题目描述

物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是—件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

输入输出格式

输入格式:
第一行是四个整数n(l≤n≤100)、m(l≤m≤20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本,e表示航线条数。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P(1 < P < m),a,b(1≤a≤b≤n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

输出格式:
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

输入输出样例

输入样例#1: 复制
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

最短路+dp。
首先spfa预处理出每两天之间的最短路,在进行转移。

#include<bits/stdc++.h>

using namespace std;
const int MAXN = 105;

struct Edge{
    int nxt,to,val;
}edge[MAXN*MAXN];

int n,m,e,k,head[MAXN],cnt,d,dis[MAXN];
long long srt[MAXN][MAXN];
long long dp[MAXN];
bool used[MAXN][MAXN],vis[MAXN],now[MAXN];

inline void add(int bg,int ed,int w){
    edge[++cnt].to=ed;
    edge[cnt].val=w;
    edge[cnt].nxt=head[bg];
    head[bg]=cnt;
}

inline long long spfa(int a,int b){
    queue<int> q;
    for(register int i=1;i<=m;i++) dis[i]=1e5+5;
    memset(vis,false,sizeof(vis));
    memset(now,false,sizeof(now));
    for(register int i=1;i<=m;i++)
        for(register int j=b;j<=a;j++)
        if(used[i][j]) now[i]=1;
    vis[1]=1;dis[1]=0;q.push(1);
    while(q.size()){
        int x=q.front();q.pop();
        vis[x]=0;
        for(register int i=head[x];i;i=edge[i].nxt){
            int u=edge[i].to;
            if(now[u]) continue;
            if(dis[u]>dis[x]+edge[i].val){
                dis[u]=dis[x]+edge[i].val;
                if(!vis[u]){
                    vis[u]=1;
                    q.push(u);
                }
            }
        }
    }
    return dis[m];
}

int main(){
    scanf("%d%d%d%d",&n,&m,&k,&e);
    for(register int i=1;i<=e;i++){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        add(a,b,c);
        add(b,a,c);
    }
    scanf("%d",&d);
    for(register int i=1;i<=d;i++){
        int a,b,c;
        scanf("%d%d%d",&a,&b,&c);
        for(register int j=b;j<=c;j++)
            used[a][j]=1;
    }
    for(register int i=1;i<=n;i++)
        for(register int j=1;j<=n;j++)
            srt[j][i]=spfa(i,j);
    for(register int i=1;i<=n;i++){
        dp[i]=(long long)srt[1][i]*i;
        for(register int j=1;j<i;j++)
            dp[i]=min(dp[i],dp[j]+k+(long long)srt[j+1][i]*(i-j));
    }
//  for(register int i=1;i<=n;i++) cout<<dp[i]<<endl;
    printf("%lld",dp[n]);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值