题目描述
使得 x^x 达到或超过 n 位数字的最小正整数 x 是多少?
输入输出格式
输入格式:
一个正整数 n
输出格式:
使得 x^x 达到 n 位数字的最小正整数 x
输入输出样例
输入样例#1: 复制
11
输出样例#1: 复制
10
说明
n<=2000000000
解题思路
sb题,数学高中必修一。x^x>=10^(n-1) 化简一下就是 log10 x^x>=n-1
继续化简可以得到 x*log10 x >=n-1 ,然后二分答案。
代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
LL n;
int l=1,r=1<<30;
int ans;
int main(){
cin>>n;
if(n==1) {cout<<1<<endl;return 0;}
while(l<=r){
int mid=l+r>>1;
double x=log10(mid);
if((double)mid*x>=n-1) {
ans=mid;
r=mid-1;
}
else l=mid+1;
}
cout<<ans<<endl;
return 0;
}