LUOGU P2759 奇怪的函数

题目描述

使得 x^x 达到或超过 n 位数字的最小正整数 x 是多少?
输入输出格式
输入格式:

一个正整数 n

输出格式:

使得 x^x 达到 n 位数字的最小正整数 x

输入输出样例
输入样例#1: 复制

11

输出样例#1: 复制

10

说明

n<=2000000000

解题思路

sb题,数学高中必修一。x^x>=10^(n-1) 化简一下就是 log10 x^x>=n-1
继续化简可以得到 x*log10 x >=n-1 ,然后二分答案。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>

using namespace std;
typedef long long LL;

LL n;
int l=1,r=1<<30;
int ans;

int main(){
    cin>>n;
    if(n==1) {cout<<1<<endl;return 0;}
    while(l<=r){
        int mid=l+r>>1;
        double x=log10(mid);
        if((double)mid*x>=n-1) {
            ans=mid;
            r=mid-1;
        }
        else l=mid+1;
    }
    cout<<ans<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值