动态规划之背包问题---01背包---完全背包---多重背包

本篇博客是基于Carl大佬的刷题笔记 (代码随想录) 进行总结的

另外加入了我自己的一些整理,特此记录,以防遗忘

几种在面试中常见的背包,其关系如下:

416.分割等和子集1

通过这个图,可以很清晰分清这几种常见背包之间的关系。

一、基本步骤

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

其实这五部里哪一步都很关键,确定递推公式和确定遍历顺序都具有规律性和代表性,所以下面为从这两点来对背包问题做的一些总结

二、背包递推公式

1.问能否能装满背包(或者最多装多少) d p [ j ] = m a x ( d p [ j ] , d p [ j − n u m s [ i ] ] + n u m s [ i ] ) dp[j] = max(dp[j], dp[j - nums[i]] + nums[i]) dp[j]=max(dp[j],dp[jnums[i]]+nums[i]) ,对应题目如下:

2.问装满背包有几种方法 d p [ j ] + = d p [ j − n u m s [ i ] ] dp[j] += dp[j - nums[i]] dp[j]+=dp[jnums[i]] ,对应题目如下:

3.问背包装满最大价值 d p [ j ] = m a x ( d p [ j ] , d p [ j − w e i g h t [ i ] ] + v a l u e [ i ] ) ; dp[j] = max(dp[j], dp[j - weight[i]] + value[i]); dp[j]=max(dp[j],dp[jweight[i]]+value[i]);,对应题目如下:

装满背包所有物品的最小个数 d p [ j ] = m i n ( d p [ j − c o i n s [ i ] ] + 1 , d p [ j ] ) ; dp[j] = min(dp[j - coins[i]] + 1, dp[j]); dp[j]=min(dp[jcoins[i]]+1,dp[j]); ,对应题目如下:

三、遍历顺序

01背包

二维dp数组01背包先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。

一维dp数组01背包只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历

一维dp数组的背包在遍历顺序上和二维dp数组实现的01背包其实是有很大差异的!

完全背包

说完01背包,再看看完全背包。

纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历

但是仅仅是纯完全背包的遍历顺序是这样的,题目稍有变化,两个for循环的先后顺序就不一样了。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

相关题目如下:

如果求最小数,那么两层for循环的先后顺序就无所谓了,相关题目如下:

对于背包问题,其实递推公式算是容易的,难是难在遍历顺序上,如果把遍历顺序搞透,才算是真正理解了

四、总结

这篇背包问题总结篇是对背包问题的高度概括,讲最关键的两步:递推公式和遍历顺序,结合力扣上的题目全都抽象出来了

而且每一个点,都给出了对应的力扣题目

五、代码

01背包问题的母题(代码如下)

#include<iostream>
#include<vector>
#include<algorithm>
#include<string>

using namespace std;

int test_01_package(vector<int> &value, vector<int> &weight, int bagWeight)
{
    // 使用dp算法求解最大容量为4的背包可以装载物品的最大价值
    // 1.创建dp数组 dp[i][j]表示容量为j的背包的从物品0~i中任取物品后可装载的最大价值
    vector<vector<int>> dp(weight.size(), vector<int>(bagWeight + 1));
    // 3.初始化dp数组
    for (size_t i = 0; i < weight.size(); i++) {
        dp[i][0] = 0;
    }
    for (int j = 0; j < weight[0]; j++) {
        dp[0][j] = 0;
    }
    for (int j = weight[0]; j <= bagWeight; j++) {
        dp[0][j] = value[0];
    }
    // 2.递归公式
    // dp[i][j] 表示容量为j的背包的从物品0~i中任取物品后可装载的最大价值
    // 其值的获取可以由两种情况递推得到(分情况讨论)
    //      a.肯定不取物品i             dp[i][j] = dp[i-1][j] 
    //      b.既可以取也可以不取物品i     max(dp[i-1][j-weight[i]] + value, dp[i-1][j])
    // 4.遍历
    for (size_t i = 1; i < weight.size(); i++) {
        for (int j = 1; j <= bagWeight; j++)
        {
            if(j < weight[i])
                dp[i][j] = dp[i - 1][j];
            else
                dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);
        }
    }

    // 5.返回结果
    return dp[weight.size() - 1][bagWeight];
}

/*
 * 1.dp数组创建 dp[j] 表示容量为i的背包所能装载的最大价值
 * 3.初始化 dp[j]数组 在只有一个物品0可选时 选该物品dp[j]!=0 不选该物品dp[j]==0 因此dp数组应该初始化为0
 *   由于是 vector<int> 编译器默认初始化为0 故这步可以省略
 * 2.递推公式
 *   dp[j] = max(dp[j], dp[j - weight[j]] + value[i])
 *   本质上是二维dp数组中的第i行复用了dp数组中的第i-1行 同时为了避免dp[i][j]覆盖了dp[i-1][j]
 *   进一步影响dp[i][j++...]的递推求解 所以遍历顺利应该改成从大到小 从右向左的顺序
 * 4.遍历
 * 5.返回最终值
 */
int test_01_package_scroll(vector<int>& value, vector<int>& weight, int bagWeight)
{
    vector<int> dp(bagWeight + 1);
    for (int i = 0; i < weight.size(); i++) {
        for (int j = bagWeight; j >= weight[i]; j--)
        {
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    return dp[bagWeight];
}

int main() {
    // 1.物品价值
    vector<int> value = {15, 20, 30};
    // 2.物品重量
    vector<int> weight = {1, 3, 4};
    // 3.背包容量
    int bagWeight = 4;

    cout << "test_01_package:";
    cout << test_01_package(value, weight, bagWeight) << endl;

    cout << "test_01_package_scroll:";
    cout << test_01_package_scroll(value, weight, bagWeight) << endl;

    return 0;
}

完全背包问题的母题(代码如下)

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

/*
 * 对于完全背包问题, 有如下几条结论:
 * 1、因为是完全背包问题,所以正序遍历dp[j]
 * 2、如果是组合问题,应该先遍历物品(外循环) 再遍历背包容量(内循环)
 *      因为物品在外边循环,假如背包容量为4, 物品被遍历到的顺序是[1, 3, 4...], 那么物品的顺序只能是{1, 3} 而不能是{3, 1}
 * 3、如果是排列问题,应该先遍历背包容量(外循环) 再遍历物品(内循环)
 */

int test_completePackage(vector<int> &value, vector<int> &weight, int bagweight)
{
    // 1.dp数组
    vector<int> dp(bagweight + 1);
    // 2.初始化
    // dp[0] = 0;

    // 3.递归公式
    // dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

    // 4.遍历
    for (size_t i = 0; i < value.size(); i++)
    {
        for (int j = weight[i]; j <= bagweight; j++)
        {
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
    }
    
    // 5.返回结果
    return dp[bagweight];
}

int main() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    int bagWeight = 4;

    cout << test_completePackage(value, weight, bagWeight) << endl;
   
    return 0;
}

多重背包问题的母题(代码如下)

/*
 * 多重背包问题
 * 指定背包重量为j 求解背包容量为j时 从下属数组描述的物品中选取 试问该背包所能装载的最大价值是多少?其中物品的数目是一个有限值
 * 物品的重量为weight[]表示
 * 物品的价值为value[]表示
 * 物品的数目为nums[]表示---->注意:这里正是多重背包问题与01背包问题、完全背包问题的区别之处
 *
 * 解题思路: 将多重背包平铺开来,就变成了01背包问题 如下所示:
 *      物品重量 weight[i] = {1, 3, 4};
 *      物品价值 value[i] = {15, 20, 30};
 *      物品数目 nums[i] = {2, 3, 2};
 * 平铺后等价于--->
 *      物品重量 weight[i] = {1, 1, 3, 3, 3, 4, 4};
 *      物品价值 value[i] = {15, 15, 15, 20, 20, 20, 30, 30};
 *      物品数目 nums[i] = {1, 1, 1, 1, 1, 1, 1};
 * 也就可以直接使用01问题解决了
 */

#include <algorithm>
#include <iostream>
#include <vector>

using namespace std;

int test_MultiPackage(vector<int> w, vector<int> v, vector<int> n, int bagWeight) {
    // 一.平铺问题变成01背包
    for (size_t i = 0; i < n.size(); i++)
    {
        while (n[i] > 1)
        {
            w.push_back(w[i]);
            v.push_back(v[i]);
            n[i]--;
        }
    }

    // 二.按照01问题解决
    vector<int> dp(bagWeight + 1);

    dp[0] = 0;

    for (size_t i = 0; i < w.size(); i++)
    {  
        for (int j = bagWeight; j >= w[i] ; j--)
        {
            dp[j] = max(dp[j], dp[j - w[i]] + v[i]);
        }
    }

    return dp[bagWeight];
}

int main() {
    vector<int> weight = {1, 3, 4};
    vector<int> value = {15, 20, 30};
    vector<int> nums = {2, 3, 2};
    int bagWeight = 10;

    cout << test_MultiPackage(weight, value, nums, bagWeight) << endl;
    return 0;
}
  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咖啡与乌龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值