常用的Python的编辑器以及环境


前言

对于刚入门的人,可能会有这样的疑问,我该用什么环境来编译Python呢?什么环境比较适合我呢?这里我做了一个简单的介绍。也是对自己的一个总结


提示:以下是本篇文章正文内容,下面案例可供参考

0 安装Python环境两种方法

1.Python

Python是编程语言,官方的Python包含了核心的模块和库,为了完成其他任务,需要安装其他的模块和库。

直接原始安装包。

官方地址链接

在这里插入图片描述

2.Anaconda

Anaconda将Python和许多与科学计算相关的库捆绑在一起,形成了一个方便的科学计算环境,你安装了Ananconda就相当于安装了Python外加这些模块和库。当然Anaconda主要的功能还在于你可以方便进行环境管理。

官方地址:链接 免费的噢

在这里插入图片描述

特别提示
Anaconda是python和NumPy,SciPy 等科学计算库的集成包,省去了自己下载和安装各种包的麻烦,特别上linux上升级和安装python十分痛苦

anaconda包中自带的IDE: jupyter notebookspyder(下面的编译器介绍的)

其他:除了Anaconda,还有WinPython、Python(X,Y)等,你可以类比Linux系统有Ubuntu、CentOS等发行版,把Anaconda、WinPython理解成不同的Python发行版。

下面是IDE-编译器选择

一、Pycharm

PyCharm是一种Python IDE(Integrated Development Environment,集成开发环境),带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试、版本控制。此外,该IDE提供了一些高级功能,以用于支持Django框架下的专业Web开发。

在这里插入图片描述
支持Windows、macOS、Linxu
官方地址

有专业版(可以破解)、社区版(免费)

安装教程参考

主要插件和功能:

  1. 内置开发者工具
  2. 远程开发能力
  3. 实时编辑模式
  4. IPython Notebook

优点:

  1. PyCharm 支持 web 开发框架,如 Pyramid、Flask 和 Django。
  2. 提供智能代码功能,可以执行更精确、快速的bug 修复。
  3. 在 Docker 和 Vagrant 连接和 ssh 终端的帮助下,允许在远程主机上进行程序开发。

缺点:

  1. 界面庞杂
  2. 其优点的成本高昂

一个简单例子
在这里插入图片描述
运行结果
在这里插入图片描述

特别提醒
初学Python编程,如果机器配置低,PyCharm 有点卡,
如果电脑配置高,建议用PyCharm

二、Vscode

Visual Studio Code 有时会与 Visual Studio IDE 混淆,后者并非 Python 使用者常用的工具。VS Code 是完整的代码编辑器,具备很多优秀功能,许多程序员称其为最好的 IDE 编辑器。

在这里插入图片描述
下载链接:点击
重点是免费的,笔者很喜欢,非常适合学生

兼容性*:Windows、Linux、Mac OS

主要插件和功能:

  1. 内置 git
  2. 自定义工具扩展插件
  3. 断点调试
  4. 交互式控制台

优点:

  1. 其 Electron 框架允许开发者在几乎所有平台上使用 VS Code。
  2. 在编辑器中直接 debug。
  3. 支持多个键盘快捷键,以加速编程。

缺点:

  1. debug 功能有限。
  2. 没有内置模板。

测试例子

在这里插入图片描述
输出结果
在这里插入图片描述

三、Spyder

Spyder 是为数据科学而开发的。它是开源工具,能够与大量平台兼容,因而成为 IDE 新手用户的更好选择。为实现完美开发,它合并了多个关键库,如 NumPy、Matplotlib 和 SciPy。

在这里插入图片描述
下载传送:链接
免费的哦

优点:通用,阅读代码方便,适用于大型的项目
缺点:需要从头运行(Spyder可以F9以任意行为块运行)

测试例子

在这里插入图片描述
输出结果
在这里插入图片描述

四、Jupyter Notebook

Jupyter 是基于 web 的编辑器,它允许开发者构建和运行脚本或 notebook。它相对简单,对用户也更加友好。Jupyter 还使用 Seaborn 和 Matplotlib 执行数据可视化。

在这里插入图片描述

优点:利于代码阅读及修改,以任意行为块,运行的
缺点:环境需要配置

下载地址:链接·
免费的噢

一个例子
在这里插入图片描述

输出结果
在这里插入图片描述

总结

1.如果是学生打打CTFACM
这里我强烈的推荐Vscode,它非常的轻便,并且不占用太多的运行内存,兼容性好。特别是PWN选手。

2.如果是学生党、非常建议使用Jupyter Notebook,因为它玩起深度学习非常的方便,代码块运行。其次Vscode也行。

3.很多人可能需要SSH服务器运行代码,这里我还是非常推荐Vscode。并且非常容易配置。
参考我的下一篇文章
解决Vscode每次连接ssh登入需要输入密码问题(免密登入

参考地址

https://www.zhihu.com/question/309205504
https://zhuanlan.zhihu.com/p/87319924
https://www.zhihu.com/question/327537222/answer/702997263
https://www.xinruiyun.cn/ecs/3633.html
https://blog.csdn.net/qq_42202395/article/details/117982838
### Anaconda 环境配置及常见问题解决方案 #### 1. 加入系统变量导致 CMD 命令提示符闪退 当尝试将 Anaconda 添加到系统的 PATH 变量中时,可能会遇到命令提示符 (CMD) 打开即关闭的情况。这通常是因为路径设置不当引起的冲突所致[^1]。 为了修复此问题,在安装过程中可以选择不勾选“Add Anaconda to my PATH environment variable”,从而避免潜在的路径冲突。如果已经选择了该选项并遇到了上述问题,则可以通过编辑环境变量来移除相关条目,或者通过重启计算机使更改生效后再调整环境变量设置。 #### 2. VSCode 中无法启动 Conda 环境 对于 Visual Studio Code 用户来说,有时会发现即使成功创建了新的 conda 虚拟环境也无法正常加载这些环境。这类情况可能源于 Python 解释器未被正确识别或指定给项目文件夹。 确保已安装适用于 VSCode 的 Python 插件,并按照如下操作指引进行排查: - 使用 `Ctrl+Shift+P` 或者 `Cmd+Shift+P`(Mac),输入 "Python Select Interpreter" - 浏览可用解释器列表,选择合适的 conda 环境作为默认解析程序 - 如果目标环境中缺少必要的依赖项,请先激活对应环境并通过 pip 或 conda 安装所需库 另外值得注意的是,部分情况下需要手动修改 `.vscode/settings.json` 文件中的 `"python.pythonPath"` 字段指向正确的 Python.exe 地址[^3]。 ```json { "python.pythonPath": "${workspaceFolder}/venv/bin/python", // Linux/MacOS "python.pythonPath": "${workspaceFolder}\\venv\\Scripts\\python.exe" // Windows } ``` #### 3. PyTorch 版本兼容性注意事项 在构建基于 GPU 支持的人工智能应用时,保持 CUDA、cuDNN 和 PyTorch 各组件之间的良好匹配至关重要。例如,CUDA 11.0 应搭配特定版本号的 cuDNN 来支持 PyTorch 1.7.x 系列下的稳定运行;而 Python 则建议维持在一个相对稳定的次要发行版上,比如 Python 3.6[^4]。 可以利用以下命令行指令完成精确版本控制下的软件包安装: ```bash pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio===0.7.2 -f https://download.pytorch.org/whl/torch_stable.html ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值