DLFuzz:深度学习系统中的差分模糊测试框架

精读论文《DLFuzz: Differential Fuzzing Testing of Deep Learning Systems》,记录阅读笔记。

模糊测试

模糊测试(Fuzzing)是一种通过向目标系统提供非预期的输入并监视异常结果来发现软件漏洞的方法。通常使用大量的随机或半随机输入数据。

背景

目前研究中,用于提高DL系统测试效率的方法主要有以下不足:

1. 利用Z3等求解器在DL模型的形式化约束下生成对抗输入,精确,但是工作在沉重的白盒方式下,约束求解消耗资源。

2. 黑盒方法利用启发式算法对输入进行变异,直到获得对抗输入,耗时,严重依赖人工提供的真实标签。

3. DeepXplore为了避免人工检查,采用多个功能相似的DL系统产生测试预言,但是这存在可扩展性和寻找相似DL系统的困难。

4. 通过对输入施加不可感知的扰动(基于梯度的方式),高效,但是神经元覆盖率低。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海苔小饼干

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值