知识点
- 使用matplotlib进行3D曲面绘图
- numpy.meshgrid函数
使用matplotlib进行3D曲面绘图
matplotlib包本身不具有绘制3D图形功能,需要借助它依赖的Axes3D工具实现绘制3D图形
同时需要注意,plot_surface函数接收的数据参数都是numpy.ndarray类型。
numpy.meshgrid函数
numpy.meshgrid函数的功能是对两个向量进行扩展,扩展成为一个n*n的矩阵
作业代码
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
xData = [1.0, 2.0, 3.0]
yData = [2.0, 4.0, 6.0]
# predict function
def predict(x : float, w : np.ndarray, b : np.ndarray) -> np.ndarray:
return x * w + b
# loss function
def loss(predictY : np.ndarray, realY : float) -> float:
return (predictY - realY) ** 2
wList = np.arange(0.0, 4.1, 0.1)
bList = np.arange(-2.0, 2.0, 0.1)
w, b = np.meshgrid(wList, bList)
mse = np.zeros(w.shape)
# enum w and b to predict
for x, y in zip(xData, yData):
predictY = predict(x, w, b)
mse += loss(predictY, y)
mse /= len(xData)
# draw
# add axes
fig = plt.figure()
ax = Axes3D(fig)
# After matplotlib 3.4, Axes3D will need to be explicitly added to the figure
fig.add_axes(ax)
plt.xlabel(r'w', fontsize=20, color='cyan')
plt.ylabel(r'b', fontsize=20, color='cyan')
ax.plot_surface(w, b, mse, rstride = 1, cstride = 1, cmap = 'rainbow')
plt.show()