数论-常见定理的探究

关键词:威尔逊定理 欧拉定理 费马小定理 中国剩余定理

威尔逊定理

当且仅当p为素数时,(p - 1)! ≡ -1 (mod p)

  • 上式也可写作 (p - 1)! ≡ p-1 (mod p)(p-1)! + 1 ≡ 0 (mod p)
  • 上式可作素数的判别条件,但复杂度较大,实用性较差

欧拉定理

若n,a为正整数,且n,a互质,即gcd(a,n) = 1,则
a^φ(n) ≡ 1 (mod n)

  • φ(n) 称欧拉函数,欧拉函数是求小于n的数中与n互质的数的数目

  • 如果n是质数,那么1到n-1所有数都是与n互质的,所以φ(n) = n-1

  • 如果n是合数,例如φ(8)=4,因为1,3,5,7均和8互质

  • 欧拉函数求法

    • 基本原理:1到n-1中找到与n不互质的数,然后把他们减掉
    • 具体操作*:找到n的质因子,把它们和它们的倍数都删掉
    • 优化技巧:利用容斥原理避免重复处理
    • 例子:φ(12)
      • 找质因数:12 → \to {2 3}
      • 找倍数:[2] ≡ {2 4 6 8 10} 、[3] ≡ {3 6 9}
      • 做统计:φ(12) = 12 - (12 / 2) - (12 / 3 ) + 1 = 12 * (1 - 1/2 - 1/3 + 1/6)
      • 容斥优化:φ(12) = 12 * (1 - 1/2) * (1 - 1/3) = 12 * (1 - 1/2 - 1/3 + 1/6)
  • 欧拉定理可用于求逆元,显然 inv(a, n) = a ^ (φ(n) - 1)

实现代码

  • 求单个欧拉函数(O(n^0.5)
//欧拉函数
int phi(int x){
    int ans = x;
    for(int i = 2; i*i <= x; i++){
        if(x % i == 0){
            ans = ans / i * (i-1);
            while(x % i == 0) x /= i;
        }
    }
    if(x > 1) ans = ans / x * (x-1);
    return ans;
}
  • 求n个欧拉函数(O(n))

    注:类似于素数筛

#include<cstdio>
const int N = 100000 + 5;
int phi[N];
void Euler(){
    phi[1] = 1;
    for(int i = 2; i < N; i ++){
        if(!phi[i]){
            for(int j = i; j < N; j += i){
                if(!phi[j]) phi[j] = j;
                phi[j] = phi[j] / i * (i-1);
            }
        }
    }
}
int main(){
    Euler();
}

费马小定理

如果p是一个质数,而整数a不是p的倍数,则有a ^ (p - 1) ≡ 1(mod p)。

  • 该定理可用于求逆元,显然 inv(a, p) = a ^ (p-2)

中国剩余定理

目标问题

求解线性同余方程组最小整数解

\begin{cases}
    x ≡ a_1 (mod m_1) \\
    x ≡ a_2 (mod m_2) \\
    ...\\
    x ≡ a_n (mod m_n) \\
\end{cases}    

其中, m 1 m_1 m1 m 2 m_2 m2、… 、 m n m_n mn两两互质的整数

定理内容

M = ∏ i = 1 n m i M=\prod_{i=1}^nm_i M=i=1nmi, M i = M / m i M_i=M/m_i Mi=M/mi, t i = i n v ( M i , m i ) t_i=inv(M_i,m_i) ti=inv(Mi,mi),则方程组通解
x = ∑ i = 1 n a i t i M i + k M , k ∈ Z x=\sum_{i=1}^{n}a_it_iM_i+kM, k \in Z x=i=1naitiMi+kM,kZ
模M意义下,方程唯一解为
x = ∑ i = 1 n a i t i M i x=\sum_{i=1}^{n}a_it_iM_i x=i=1naitiMi

简单证明

由逆元定义知
x i = a i ∗ t i M i = a i ∗ i n v ( M i ) ∗ M i = a i ∗ ( m 1 . . . m i − 1 m i + 1 . . . m n ) ∗ i n v ( ( m 1 . . . m i − 1 m i + 1 . . . m n ) ) ≡ a i ∗ 1 ( m o d   m i ) ≡ a i ( m o d   m i ) \begin{aligned} x_i&=a_i*t_iM_i \\ &=a_i*inv(M_i)*M_i \\ &=a_i*(m_1...m_{i-1}m_{i+1}...m_n)*inv((m_1...m_{i-1}m_{i+1}...m_n)) \\ &≡a_i*1 (mod \ mi) \\ &\equiv a_i(mod \ m_i) \end{aligned} xi=aitiMi=aiinv(Mi)Mi=ai(m1...mi1mi+1...mn)inv((m1...mi1mi+1...mn))ai1(mod mi)ai(mod mi)

a i   ∣   x i m k   ∣   x i   ,   k ≠ i \begin{aligned} a_i\ &| \ x_i \\ m_k\ &| \ x_i\ ,\ k \neq i \end{aligned} ai mk  xi xi , k=i

x i ≡ a i ( m o d   m i ) x i ≡ 0   ( m o d   M k )   ,   k ≠ i \begin{aligned} x_i &\equiv a_i (mod \ m_i) \\ x_i &\equiv 0 \ (mod \ M_k)\ ,\ k \neq i \end{aligned} xixiai(mod mi)0 (mod Mk) , k=i

x = ∑ i = 1 n x i x=\sum_{i=1}^{n}x_i x=i=1nxi

x   %   m i = ( x 1 + . . . + x i + . . . + x n )   %   m i = ( x 1   %   m i + . . . + x i   %   m i + x n   %   m i )   %   m i = ( 0 + . . . + a i + . . . + 0 ) = a i \begin{aligned} x \ \% \ m_i &= (x_1+...+x_i+...+x_n) \ \% \ m_i \\ &= (x_1 \ \% \ m_i + ... + x_i \ \% \ m_i + x_n \ \% \ m_i) \ \% \ m_i \\ &= (0+...+a_i+...+0) \\ &=a_i \end{aligned} x % mi=(x1+...+xi+...+xn) % mi=(x1 % mi+...+xi % mi+xn % mi) % mi=(0+...+ai+...+0)=ai

x ≡ a i ( m o d   m i ) x \equiv a_i (mod \ m_i) xai(mod mi)

实现代码

//n个方程:x=a[i](mod m[i]) (0<=i<n)
LL china(int n, LL *a, LL *m){
    LL M = 1, ret = 0;
    for(int i = 0; i < n; i ++) M *= m[i];
    for(int i = 0; i < n; i ++){
        LL w = M / m[i];
        ret = (ret + w * inv(w, m[i]) * a[i]) % M;
    }
    return (ret + M) % M;
}

参考博客

  • https://www.cnblogs.com/linyujun/p/5194142.html
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值