不同路径
题目链接:力扣题目链接
难度:中等
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
示例 :
思路
- 引导
题目中说机器人每次只能向下或者向右移动一位,其实机器人走过的路可以抽象为一颗二叉树,而二叉树的叶子节点就是终点。 - 确定dp数组以及下标含义
dp[i][j] :表示从(0,0)出发,到(i,j)有dp[i][j]条不同的路径 - 确定递推公式
状态转移方程:求dp[i][j],只能由两个方向推导出来,dp[i-1][j]和dp[i][j-1],dp[i-1][j]表示从(0,0)位置到(i-1,j)有几条路径,dp[i][j-1]同理。最后得出,dp[i][j] = dp[i-1][j] + dp[i][j-1] - 3.dp数组如何初始化
如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。
初始化代码为:
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int j = 0; j < n; j++) dp[0][j] = 1; - 确定遍历顺序
这里要看一下递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
动态规划代码
class Solution{
public static int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0 ;i < m ;i++){
dp[i][0] = 1;
}
for(int i = 0; i < n ;i++){
dp[0][i] = 1;
}
for(int i = 1; i< m ;i++){
for(int j = 1; j<n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}