算法学习:62.不同路径

该博客介绍了如何使用动态规划解决计算机器人在网格中从左上角到达右下角的不同路径数量的问题。通过将问题抽象为二叉树的叶子节点,定义状态转移方程,并初始化dp数组,最终通过逐层遍历计算得出结果。动态规划代码展示了具体的实现过程。
摘要由CSDN通过智能技术生成

不同路径

题目链接:力扣题目链接
难度:中等
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。


机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。


问总共有多少条不同的路径?

示例 :

转载力扣官网

思路

  1. 引导
    题目中说机器人每次只能向下或者向右移动一位,其实机器人走过的路可以抽象为一颗二叉树,而二叉树的叶子节点就是终点。
  2. 确定dp数组以及下标含义
    dp[i][j] :表示从(0,0)出发,到(i,j)有dp[i][j]条不同的路径
  3. 确定递推公式
    状态转移方程:求dp[i][j],只能由两个方向推导出来,dp[i-1][j]和dp[i][j-1],dp[i-1][j]表示从(0,0)位置到(i-1,j)有几条路径,dp[i][j-1]同理。最后得出,dp[i][j] = dp[i-1][j] + dp[i][j-1]
  4. 3.dp数组如何初始化
    如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。
    初始化代码为:
    for (int i = 0; i < m; i++) dp[i][0] = 1;
    for (int j = 0; j < n; j++) dp[0][j] = 1;
  5. 确定遍历顺序
    这里要看一下递归公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
    这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

动态规划代码

class Solution{
	public static int uniquePaths(int m, int n) {
		int[][] dp = new int[m][n];
		for(int i =  0 ;i < m ;i++){
			dp[i][0] = 1;
		}
		for(int i = 0; i < n ;i++){
			dp[0][i] = 1;	
		}
		for(int i = 1; i< m ;i++){
			for(int j = 1; j<n; j++){
				dp[i][j] = dp[i-1][j] + dp[i][j-1];
			}	
		}
		return dp[m-1][n-1];
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

As_theWind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值