5万字讲解大模型语言高效推理研究(清华综述) 大模型由于其在各种任务中的出色表现而引起了广泛的关注。然而,大模型推理的大量计算和内存需求对其在资源受限场景的部署提出了挑战。业内一直在努力开发旨在提高大模型推理效率的技术。本文对现有的关于高效大模型推理的文献进行了全面的综述总结。首先分析了大模型推理效率低下的主要原因,即大模型参数规模、注意力计算操的二次复杂度作和自回归解码方法。然后,引入了一个全面的分类法,将现有优化工作划分为数据级别、模型级别和系统级别的优化。此外,本文还对关键子领域的代表性方法进行了对比实验,以及分析并给出一定的见解。
自然语言处理——英文文本预处理 针对LLM中最需要的数据,在刚开始进行LLM训练的时候,高质量的数据是非常重要的,但是在获取的数据可能不是人们需要的数据,因此,为了加快数据的获取,本文在这里进行相关文本预处理内容的获取。