几何凸包及多边形面积:
#define Del(a,b) memset(a,b,sizeof(a))
const int N = 1010;
const double esp = 1e-10;
struct Point
{
double x,y;
Point(double x=0,double y=0):x(x),y(y) {}
};
typedef Point Vector;
Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); }
bool operator < (const Point& a,const Point& b)
{
return a.x<b.x || (a.x==b.x && a.y<b.y);
}
int dcmp(double x) //
{
if(fabs(x)<esp) return 0;
else return x<0?-1:1;
}
bool operator == (const Point& a,const Point& b)
{
return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y)==0;
}
///计算点积,及向量长度,及向量夹角
double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B) { return acos(Dot(A,B))/Length(A)/Length(B); }
//计算叉积,向量逆时针旋转
double Cross(Vector A,Vector B) { return (A.x*B.y-A.y*B.x); }
double Area2(Vector A,Vector B,Vector C) { return Cross(B-A,C-A); }
Vector Rotate(Vector A,double rad)
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
int cmp(Point a,Point b)
{
if(a.x!=b.x)
return a.x<b.x;
if(a.y!=b.y)
return a.y<b.y;
}
double ConvexPolygonArea(Point* p,int n)//多边形面积,,点按顺序
{
double area=0;
for(int i=1;i<n-1;i++)
area+=Cross(p[i]-p[0],p[i+1]-p[0]);
return area/2;
}
int ConvexHull(Point *p,Point *ch,int n)//求凸包
{
sort(p,p+n);
int i,m=0,k;
for(i=0;i<n;i++)
{
while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;
ch[m++]=p[i];
}
k=m;
for(i=n-2;i>=0;i--)
{
while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;
ch[m++]=p[i];
}
if(n>1)m--;
return m;
}
扩展欧几里德:
void exgcd(ll a,ll b)
{
if(b==0)
{
k=1;
x=0;
return;
}
exgcd(b,a%b);
ll temp=k;
k=x;
x=temp-(a/b)*x;
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=1;
y=0;
return ;
}
else
{
exgcd(b,a%b,x,y);
int temp=x;
x=y;
y=temp-a/b*y;
}
}
快速幂求逆元:
long long quickpow ( long long a, long long b)
{
if (b < 0) return 0;
long long ret = 1;
a%= mod;
while (b) {
if (b & 1) ret = (ret * a) % mod ;
b >>= 1;
a = (a * a) % mod;
}
return ret ;
}
long long inv ( long long a) {
return quickpow (a, mod - 2);
}
欧拉函数:
ll euler(ll n){ //返回euler(n)
ll res=n,a=n;
for(ll i=2;i*i<=a;i++){
if(a%i==0){
res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出
while(a%i==0) a/=i;
}
}
if(a>1) res=res/a*(a-1);
return res;
}
//求与n互质且小于n的数的个数