1、题目
给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符
示例1:
输入: word1 = “horse”, word2 = “ros”
输出: 3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例2:
输入: word1 = “intention”, word2 = “execution”
输出: 5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)
2、分析
此题目要求,将档次word1,替换成word2,并且要求使用最小的次数,可以使用,增加,删除,修改,首先想到动态规划,题目也符合动态规划的条件之一, 判断条件之二,也就是动态变化方程,此题目中的动态方程是,当word[i] == word[j] 时,dp[i][j] = dp[i-1][j-1] 也就是不需移动距离,当word1[i] != word[j] 时,此时肯定会发生移动但是要求移动的最小,所以缓存中的移动距离应该是min(dp[i-1][j-1], dp[i][j-1],dp[i-1][j]), 选择一个最小的移动距离。第三个条件需要我们建立缓存,为什么我们需要比字符的长度 +1 是因为当字符串不存在时,[0][0]中的任意存在的行,或者列即为最小的操作次数。
d
p
[
i
]
[
j
]
=
d
p
[
i
−
1
]
[
j
−
1
]
dp[i][j] = dp[i-1][j-1]
dp[i][j]=dp[i−1][j−1]
d
p
[
i
]
[
j
]
=
m
i
n
(
d
p
[
i
−
1
]
[
j
−
1
]
,
d
p
[
i
]
[
j
−
1
]
,
d
p
[
i
−
1
]
[
j
]
)
dp[i][j] = min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j])
dp[i][j]=min(dp[i−1][j−1],dp[i][j−1],dp[i−1][j])
3、代码
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
# 浅拷贝
# dp = [[0] * (len(word2)+1)] * (len(word1)+1)
dp = [[0] * (len(word2) + 1) for _ in range(len(word1) + 1)]
def test(dp):
for i in range(1, len(word2) + 1):
dp[0][i] = dp[0][i-1] + 1
for j in range(1, len(word1) + 1):
dp[j][0] = dp[j-1][0] + 1
for i in range(1, len(word1) + 1):
for j in range(1, len(word2) + 1):
if word1[i-1] == word2[j-1]:
dp[i][j] = dp[i-1][j-1]
else:
dp[i][j] = min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) + 1
return dp[-1][-1]
return test(dp)
4、结果
执行用时 :184 ms, 在所有 Python3 提交中击败了72.85% 的用户
内存消耗 :16.6 MB, 在所有 Python3 提交中击败了84.23%的用户
5、优化
此处使用的时二维数组,但是你会发现在结果中会可以将二维数组优化为一维数组,因为在使用缓存时可以将结果覆盖。
望您:
“情深不寿,强极则辱,谦谦君子,温润如玉”。