十二、 编辑距离

1、题目

链接

给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 。 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符
示例1:
输入: word1 = “horse”, word2 = “ros”
输出: 3
解释:
horse -> rorse (将 ‘h’ 替换为 ‘r’)
rorse -> rose (删除 ‘r’)
rose -> ros (删除 ‘e’)
示例2:
输入: word1 = “intention”, word2 = “execution”
输出: 5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)

2、分析

在这里插入图片描述

此题目要求,将档次word1,替换成word2,并且要求使用最小的次数,可以使用,增加,删除,修改,首先想到动态规划,题目也符合动态规划的条件之一, 判断条件之二,也就是动态变化方程,此题目中的动态方程是,当word[i] == word[j] 时,dp[i][j] = dp[i-1][j-1] 也就是不需移动距离,当word1[i] != word[j] 时,此时肯定会发生移动但是要求移动的最小,所以缓存中的移动距离应该是min(dp[i-1][j-1], dp[i][j-1],dp[i-1][j]), 选择一个最小的移动距离。第三个条件需要我们建立缓存,为什么我们需要比字符的长度 +1 是因为当字符串不存在时,[0][0]中的任意存在的行,或者列即为最小的操作次数。
d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] dp[i][j] = dp[i-1][j-1] dp[i][j]=dp[i1][j1] d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j − 1 ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j ] ) dp[i][j] = min(dp[i-1][j-1],dp[i][j-1],dp[i-1][j]) dp[i][j]=min(dp[i1][j1],dp[i][j1],dp[i1][j])

3、代码

class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        # 浅拷贝
        # dp = [[0] * (len(word2)+1)] * (len(word1)+1)

        dp = [[0] * (len(word2) + 1) for _ in range(len(word1) + 1)]
        def test(dp):

            for i in range(1, len(word2) + 1):
                dp[0][i] = dp[0][i-1] + 1
            

            for j in range(1, len(word1) + 1):
                dp[j][0] = dp[j-1][0] + 1

            
            for i in range(1, len(word1) + 1):

                for j in range(1, len(word2) + 1):
                    if word1[i-1] == word2[j-1]:
                        dp[i][j] = dp[i-1][j-1]
                    else:
                        dp[i][j] = min(dp[i-1][j-1], dp[i][j-1], dp[i-1][j]) + 1
            
            return dp[-1][-1]
        return test(dp)

4、结果

执行用时 :184 ms, 在所有 Python3 提交中击败了72.85% 的用户
内存消耗 :16.6 MB, 在所有 Python3 提交中击败了84.23%的用户

5、优化
此处使用的时二维数组,但是你会发现在结果中会可以将二维数组优化为一维数组,因为在使用缓存时可以将结果覆盖。


望您:
“情深不寿,强极则辱,谦谦君子,温润如玉”。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值