【题解】APIO-2014 序列分割

【题目】bzoj3675

【题意】给定长度为n的序列 ai a i ,让你将其分割k次,每次分数为分割两块的元素和的乘积,最大化得分

【题解】
这种题目在考虑转化图未果后一般可以确定是dp题

再看看数据范围: n=1e5 n = 1 e 5 就知道复杂度为 O(nlog2n) O ( n l o g 2 n ) O(n) O ( n )

那么不管能不能A,先分析:

由于这道题要用Dp的话就最好保证从左往右顺序Dp
非要用树型Dp和平衡树的奏凯

蒟蒻不会树型Dp做,只会想法解决顺序问题
轻易可得:

对于整个序列的切分,可以抽象为多次在三个序列之间的切分选择

则对于任何一次决策,
设三个序列分别为 a a b c c ,元素和大小分别为A B B C a a b之间分界为 p1 p 1 b b c之间为 p2 p 2

若在当前已经确定了:
p1 p 1 p2 p 2 两个位置插入可得最优值

对于先切位置 p1 p 1 ,得两次切割代价总和为 S1=A(B+C)+BC=AB+BC+AC S 1 = A ( B + C ) + B C = A B + B C + A C
对于先切位置 p2 p 2 ,得两次切割代价总和为 S2=(A+B)C+AB=AB+BC+AC S 2 = ( A + B ) C + A B = A B + B C + A C

由于 S1=S2 S 1 = S 2 ,所以在对三个序列进行分割时没有顺序区别
推广到整个序列,在确定整个序列的最优解切割位置的情况下,切割顺序不影响答案

现在就不用管切割顺序问题了,怀着激动的心情写下了朴素 Dp D p 方程:

f[i][k]=max(f[i][k],f[j][k1]+(sum[i]sum[j])×sum[j])(j[1,i),jN) f [ i ] [ k ] = m a x ( f [ i ] [ k ] , f [ j ] [ k − 1 ] + ( s u m [ i ] − s u m [ j ] ) × s u m [ j ] ) ( j ∈ [ 1 , i ) , j ∈ N )

很快发现 O(n2) O ( n 2 ) 要是能过, APIO A P I O 就可以散伙了

本着优化 Dp D p 的目的,进行单调性分析:

对于当前需要更新的答案 f[i][k] f [ i ] [ k ] ,若 j j r更新更优,则:

f[j][k1]+(sum[i]sum[j])×sum[j]>f[r][k1]+(sum[i]sum[r])×sum[r] f [ j ] [ k − 1 ] + ( s u m [ i ] − s u m [ j ] ) × s u m [ j ] > f [ r ] [ k − 1 ] + ( s u m [ i ] − s u m [ r ] ) × s u m [ r ]

f[i][k1]f[r][k1]>sum[j]2sum[r]2+sum[i]×(sum[r]sum[j]) ⇒ f [ i ] [ k − 1 ] − f [ r ] [ k − 1 ] > s u m [ j ] 2 − s u m [ r ] 2 + s u m [ i ] × ( s u m [ r ] − s u m [ j ] )

f[j][k1]f[r][k1]+sum[r]2sum[j]2sum[r]sum[j]>sum[i] ⇒ f [ j ] [ k − 1 ] − f [ r ] [ k − 1 ] + s u m [ r ] 2 − s u m [ j ] 2 s u m [ r ] − s u m [ j ] > s u m [ i ]

则Dp可以用单调队列优化

进一步发现第二维是无用的,可以用滚动数组(ノ`Д)ノ滚掉

做完了

最后汇总一下:

状态
——— f[i][k] f [ i ] [ k ] 表示在前 i i 个数中分割成k列的最大得分,可以用滚动数组将第二维降为2

状态转移方程

f[i][k]=max(f[i][k],f[j][k1]+(sum[i]sum[j])×sum[j])(j[1,i),jN) f [ i ] [ k ] = m a x ( f [ i ] [ k ] , f [ j ] [ k − 1 ] + ( s u m [ i ] − s u m [ j ] ) × s u m [ j ] ) ( j ∈ [ 1 , i ) , j ∈ N )

斜率式

f[j][k1]f[r][k1]+sum[r]2sum[j]2sum[r]sum[j] f [ j ] [ k − 1 ] − f [ r ] [ k − 1 ] + s u m [ r ] 2 − s u m [ j ] 2 s u m [ r ] − s u m [ j ]

单调队列维护
———以 sum[i] s u m [ i ] 为基准斜率维护一个下凸包

时间复杂度 O(n) O ( n )
空间复杂度 O(n) O ( n )
蒟蒻的代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define oo (0x3f3f3f3f3f3f3f3f)
#define rg register
#define pow(x) ((x)*(x))

template <typename _Tp> inline void read(_Tp&x){
    rg char c11=getchar();x=0;rg bool booo=0;
    while(c11!='-'&&!isdigit(c11))c11=getchar();if(c11=='-')c11=getchar(),booo=1;
    while(isdigit(c11)){x=x*10+c11-'0';c11=getchar();}if(booo)x=-x;return ;
}

const int N=105000;
ll sum[N],f[N][2],n,k;
int path[201][N],q[N],fr,be;
bool le=0;
inline double slope(int x,int y){
    if(sum[x]==sum[y]) return -oo;
    return (double)(pow(sum[x])-pow(sum[y])-f[x][le^1]+f[y][le^1])/(1.0*(sum[x]-sum[y]));
}
int main(){
    read(n);read(k);
    for(rg int i=1;i<=n;++i)read(sum[i]),sum[i]+=sum[i-1];
    for(rg int p=1;p<=k;++p){
        fr=be=0,le=p&1;
        for(rg int i=1;i<=n;++i){
            while(fr<be && slope(q[fr],q[fr+1]) <= sum[i]) ++fr;
            f[i][le]=f[q[fr]][le^1]+sum[q[fr]]*(sum[i]-sum[q[fr]]);
            path[p][i]=q[fr];
            while(fr<be && slope(q[be-1],q[be]) >= slope(q[be],i)) --be;
            q[++be]=i;
        }
    }
    printf("%lld\n",f[n][le]);
    rg int i=n,j=k+1;
    while(--j){i=path[j][i];printf("%d ",i);}
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值