【笔记】莫比乌斯反演小归纳

莫比乌斯反演,又称懵逼钨丝繁衍,顾名思义就是一种让蒟蒻懵逼得像一根钨丝繁衍一般智障的算法
蒟蒻做了一天的懵逼钨丝繁衍,感觉十分智障

莫比乌斯反演


概念

若有两个函数, f ( x ) f(x) f(x) F ( x ) F(x) F(x),满足 F ( n ) = ∑ d ∣ n f ( d ) F(n)=\sum_{d|n}f(d) F(n)=dnf(d)
则有 f ( x ) = ∑ d ∣ n μ ( d ) F ( n d ) f(x)=\sum_{d|n}\mu(d)F(\frac n d) f(x)=dnμ(d)F(dn)
其中 μ \mu μ为莫比乌斯函数

证明

目前有两种证法 (蒟蒻只知道两种):直接证和卷积

①直接证法:

∑ d ∣ n μ ( d ) F ( n d ) = ∑ d ∣ n μ ( d ) ∑ d ′ ∣ n d f ( d ′ ) = ∑ d ′ ∣ n f ( d ′ ) ∑ d ∣ n d ′ μ ( d ) = f ( n ) \sum_{d|n}\mu(d) F(\frac n d)=\sum_{d|n}\mu(d)\sum_{d'|\frac n d}f(d')=\sum_{d'|n}f(d')\sum_{d|\frac n {d'}}\mu(d)=f(n) dnμ(d)F(dn)=dnμ(d)ddnf(d)=dnf(d)ddnμ(d)=f(n)

②卷积证法:

引自知乎
定义俩函数, F ( x ) F(x) F(x) f ( x ) f(x) f(x),设卷积运算 F ∗ f = ( F ∗ f ) ( n ) = ∑ i j = n F ( i ) f ( j ) F*f=(F*f)(n)=\sum_{ij=n}F(i)f(j) Ff=(Ff)(n)=ij=nF(i)f(j)
设卷积意义下的单位元 ι \iota ι使得 ι ∗ f = f \iota * f = f ιf=f
设乘法意义下的单位元 u u u使得 ( F f ) ( n ) = F ( n ) f ( n ) (Ff)(n)=F(n)f(n) (Ff)(n)=F(n)f(n),可得 u u u μ \mu μ在卷积意义下的逆元,即 u ∗ μ = ι u*\mu=\iota uμ=ι
莫比乌斯反演公式: F ( n ) = ∑ d ∣ n f ( n ) ⇔ f ( n ) = ∑ d ∣ n μ ( d ) F ( n d ) F(n)=\sum_{d|n}f(n) \Leftrightarrow f(n)=\sum_{d|n}\mu(d)F(\frac n d) F(n)=dnf(n)f(n)=dnμ(d)F(dn)
变形: F = f ∗ u ⇔ f = F ∗ μ F=f*u \Leftrightarrow f=F*\mu F=fuf=Fμ
证明: F = f ∗ u F=f*u F=fu ⇔ F ∗ μ = f ∗ u ∗ μ \Leftrightarrow F*\mu=f*u*\mu Fμ=fuμ ⇔ F ∗ μ = f ∗ ι \Leftrightarrow F*\mu=f*\iota Fμ=fι ⇔ F ∗ μ = f \Leftrightarrow F*\mu=f Fμ=f

线性筛莫比乌斯函数

具体蒟蒻不会证,贴上代码吧

	miu[1]=1;
    for(rg int i=2;i<=5e4;++i){
        if(!is[i])pri[++tot]=i,miu[i]=-1;
        for(rg int j=1;j<=tot;++j){
            rg int k=i*pri[j];if(k>5e4)break;
            is[k]=1;
            if(i%pri[j]==0){miu[k]=0;break;}
            else miu[k]-=miu[i];
        }
    }

应用

GCD HDU-1695

题意
给定 a a a, b b b, c c c,求有序数对 ( x , y ) (x,y) (x,y)满足 x ∈ [ 1 , a ] , y ∈ [ 1 , b ] , g c d ( x , y ) = c x\in [1,a],y\in[1,b],gcd(x,y)=c x[1,a],y[1,b],gcd(x,y)=c的个数

题解
首先简化问题,设答案为 a n s ( a , b , c ) ans(a,b,c) ans(a,b,c),可证答案为 a n s ( a c , b c , 1 ) ans(\frac a c,\frac b c,1) ans(ca,cb,1)

F ( n ) F(n) F(n)表示 ( x , y ) (x,y) (x,y)满足 x ∈ [ 1 , a ] , y ∈ [ 1 , b ] , c ∣ g c d ( x , y ) x \in [1,a],y\in[1,b],c|gcd(x,y) x[1,a],y[1,b],cgcd(x,y)的个数
f ( n ) f(n) f(n)表示 ( x , y ) (x,y) (x,y)满足 x ∈ [ 1 , a ] , y ∈ [ 1 , b ] , g c d ( x , y ) = c x \in [1,a],y\in[1,b],gcd(x,y)=c x[1,a],y[1,b],gcd(x,y)=c的个数
则可证 F ( x ) F(x) F(x) f ( x ) f(x) f(x)符合 F ( n ) = ∑ d ∣ n f ( n ) F(n)=\sum_{d|n}f(n) F(n)=dnf(n),最后答案为 f ( 1 ) f(1) f(1)
可证 F ( d ) = n d ∗ m d F(d)=\frac n d *\frac m d F(d)=dndm
答案为 f ( 1 ) = ∑ d m i n ( a , b ) μ ( d ) F ( d ) f(1)=\sum_{d}^{min(a,b)}\mu(d)F(d) f(1)=dmin(a,b)μ(d)F(d)

代码

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
#define rg register

template <typename _Tp> inline void read(_Tp&x){
	char c11=getchar();x=0;bool booo=0;
	while(c11!='-'&&!isdigit(c11))c11=getchar();if(c11=='-'){c11=getchar();booo=1;}
	while(isdigit(c11)){x=x*10+c11-'0';c11=getchar();}if(booo)x=-x;return ;
}

const int N=100500;
ll miu[N],is[N],pri[N],tot=0,ans1,ans2;

void pre_miu(){
	miu[1]=1;
	for(rg int i=2;i<=1e5;++i){
		if(!is[i])pri[++tot]=i,miu[i]=-1;
		for(rg int j=1;j<=tot;++j){
			rg int k=pri[j]*i;if(k>1e5)break;
			is[k]=1;
			if(i%pri[j]==0){miu[k]=0;break;}
			else miu[k]-=miu[i];
		}
	}
	return ;
}

int main(){
	rg int T,a,b,c;read(T);
	pre_miu();
	for(rg int cases=1;cases<=T;++cases){
		ans1=ans2=0;
		read(a);read(a);read(b);read(b);read(c);
		if(!c){printf("Case %d: 0\n",cases);continue;}
		a/=c,b/=c;
		if(a>b)swap(a,b);
		for(rg int i=1;i<=a;++i)
			ans1+=(ll)miu[i]*(a/i)*(b/i),
			ans2+=(ll)miu[i]*(a/i)*(a/i);
		printf("Case %d: %lld\n",cases,ans1-(ans2>>1));
	}
	return 0;
}
[POI2007]ZAP-Queries

和楼上一样,不过数据大了一些,需要分块优化:由于有一段 n i \frac n i in是相同的,所以可以进行跳跃式加和,复杂度 O ( m i n ( n , m ) ) O(\sqrt {min(n,m)}) O(min(n,m) )

代码

		a/=c,b/=c,ans=0;
        if(a>b)swap(a,b);
        for(rg int i=1,j;i<=a;i=j+1){
            j=min(a/(a/i),b/(b/i));
            ans+=1ll*(sum[j]-sum[i-1])*(a/i)*(b/i);
        }
[HAOI2011]Problem b

又和楼上差不多,只不过加了下限,用上容斥

后面两题和第一题代码类似,加以修改即可

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值