Problem
Solution
算是HNOI中比较简单的了……
这题一眼就是链剖,发现不能简单地线段树上标记覆盖修改,于是在线段树上的每一个节点上建一个堆,修改时如果修改区间,则直接在代表那个区间的线段树节点上插入即可,在修改时直接修改路径的补集,查询时要收集线段树上从根到那个节点一路上的堆顶值,这题唯一的难度就在代码要在短时间内打对吧(好像2016年的题都是这样?)
Code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define rg register
#define cl(x) memset(x,0,sizeof(x))
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)>0?(x):(-(x)))
template <typename _Tp> inline _Tp read(_Tp&x){
rg char c11=getchar(),ob=0;x=0;
while(c11^'-'&&!isdigit(c11))c11=getchar();if(c11=='-')c11=getchar(),ob=1;
while(isdigit(c11))x=x*10+c11-'0',c11=getchar();if(ob)x=-x;return x;
}
const int N=100100;
struct Edge{int v,nxt;}a[N<<1];
struct node{int l,r,w;}qu[N<<1];
int head[N],id[N],depth[N],sz[N],son[N],top[N],dad[N];
int n,m,_ans,_(0),cnt(0),rc(0);
struct HEAP{
priority_queue <int> q1,q2;
HEAP(){while(!q1.empty())q1.pop();while(!q2.empty())q2.pop();}
inline void add(int x){q1.push(x);}
inline void del(int x){q2.push(x);}
inline int top(){
while(!q2.empty())
if(q1.top()==q2.top())
q1.pop(),q2.pop();
else break;
if(!q1.empty())return q1.top();
else return -1;
}
}heap[N<<2];
struct Sequence{int l,r;inline bool operator < (const Sequence&b) const {return l<b.l;}}seq[N];
inline void add(int u,int v){
a[++_].v=v,a[_].nxt=head[u],head[u]=_;
a[++_].v=u,a[_].nxt=head[v],head[v]=_;
}
inline void dfs1(int x,int fa,int deep){
depth[x]=deep,dad[x]=fa,sz[x]=1;
rg int mxson(-1);
for(rg int i=head[x];i;i=a[i].nxt)if(a[i].v!=fa){
dfs1(a[i].v,x,deep+1);
sz[x]+=sz[a[i].v];
if(sz[a[i].v]>mxson)mxson=sz[son[x]=a[i].v];
}
return ;
}
inline void dfs2(int x,int Top){
id[x]=++cnt;
top[x]=Top;
if(!son[x])return ;
dfs2(son[x],Top);
for(rg int i=head[x];i;i=a[i].nxt)
if(a[i].v!=dad[x]&&a[i].v!=son[x])
dfs2(a[i].v,a[i].v);
return ;
}
#define mid ((l)+(r)>>1)
inline void update(int l,int r,int x,int L,int R,int alpha,int opt){
if(L<=l&&r<=R){
if(opt)heap[x].add(alpha);
else heap[x].del(alpha);
return ;
}
if(L<=mid)update(l,mid,x<<1,L,R,alpha,opt);
if(mid<R)update(mid+1,r,x<<1|1,L,R,alpha,opt);
return ;
}
inline void get_ans(int l,int r,int x,int pos){
_ans=max(_ans,heap[x].top());
if(l==r)return ;
if(pos<=mid)get_ans(l,mid,x<<1,pos);
else get_ans(mid+1,r,x<<1|1,pos);
return ;
}
#undef mid
inline void ch_path(int x,int y,int alpha,int opt){
rc=0;
while(top[x]!=top[y]){
if(depth[top[x]]<depth[top[y]])swap(x,y);
seq[++rc].l=id[top[x]];
seq[rc].r=id[x];
x=dad[top[x]];
}
if(depth[x]>depth[y])swap(x,y);
seq[++rc].l=id[x];seq[rc].r=id[y];
sort(seq+1,seq+rc+1);
rg int tl,tr,las(0);
for(rg int i=1;i<=rc;++i){
tl=las+1,tr=seq[i].l-1;
if(tl<=tr)update(1,n,1,tl,tr,alpha,opt);
las=seq[i].r;
}
tl=las+1,tr=n;
if(tl<=tr)update(1,n,1,tl,tr,alpha,opt);
return ;
}
int main(){
read(n),read(m);
for(rg int i=1,x,y;i<n;++i)add(read(x),read(y));
rg int opt;
dfs1(1,0,1);dfs2(1,1);
for(rg int cas=1,x,y,z;cas<=m;++cas){
read(opt);
switch(opt){
case 0:
qu[cas].l=read(x);qu[cas].r=read(y);
qu[cas].w=read(z); ch_path(x,y,z,1);
break;
case 1:
read(x);
ch_path(qu[x].l,qu[x].r,qu[x].w,0);
break;
case 2:
read(x);
_ans=-1;
get_ans(1,n,1,id[x]);
printf("%d\n",_ans);
break;
}
}
return 0;
}