可视化和回归分析星巴克咖啡在中国的定价建议。星巴克的拿铁大杯Tall 在各国的价格。 Claude AI | 代码自动生成的数据可视化代码
选择Claude AI 而非 ChatGPT的理由是前者更懂中文!具体可以参见我前面的两篇文章对比两者的中英文翻译的表现及使用安装等难易程度:
Claude测评之二 | 英译中优于Deepl
终于找到替代ChatGPT的Claude
#可视化 #回归分析
#星巴克咖啡在
#中国定价 请AI自动生成python可视化的代码。提示词是假设提问者并不了解可视化库的情况下,并且在看到图后,继续提出改善的提示要求。
适合比较价格高低的python可视化代码,例如星巴克咖啡拿铁的价格数据为输入:
Starbucks Tall Latte price:
Switzerland: $7.17
Denmark: $6.55
Finland: $5.67
Hong Kong: $5.52
Luxembourg: $5.51
France: $5.36
UK: $5.31
Norway: $5.08
Singapore: $4.90
Sweden: $4.83
Argentina: $4.67
Germany: $4.49
Saudi Arabia: $4.27
China: $4.23
South Korea: $4.11
Australia: $3.97
Spain: $3.95
Canada: $3.85
Japan: $3.57
Poland: $3.56
India: $3.56
USA: $3.26
Indonesia: $3.08
Cyprus: $2.97
Italy: $2.84
Bulgaria: $2.69
South Africa: $2.64
Colombia: $2.50
Egypt: $2.23
Brazil: $1.96
Turkey: $1.31
Claude 应用 上午 9:32
这里是一个使用Python Matplotlib库可视化这些数据的代码: #python
import matplotlib.pyplot as plt
countries = ['Switzerland', 'Denmark', 'Finland', 'Hong Kong', 'Luxembourg',
'France', 'UK', 'Norway', 'Singapore', 'Sweden', 'Argentina',
'Germany', 'Saudi Arabia', 'China', 'South Korea', 'Australia',
'Spain', 'Canada', 'Japan', 'Poland', 'India', 'USA', 'Indonesia',
'Cyprus', 'Italy', 'Bulgaria', 'South Africa', 'Colombia', 'Egypt', 'Brazil', 'Turkey']
prices = [7.17, 6.55, 5.67, 5.52, 5.51, 5.36, 5.31, 5.08, 4.90, 4.83, 4.67,
4.49, 4.27, 4.23, 4.11, 3.97, 3.95, 3.85, 3.57, 3.56, 3.56, 3.26,
3.08, 2.97, 2.84, 2.69, 2.64, 2.50, 2.23, 1.96, 1.31]
plt.bar(countries, prices, color='maroon', width=0.4)
plt.xlabel("Country")
plt.ylabel("Price ($)")
plt.title("Starbucks Tall Latte Price")
plt.ylim(0, 8)
plt.show()
这个代码会输出一个条形图,x 轴为国家,y 轴为相应国家的星巴克拿铁价格,方便直观比较各国价格的高低。
图示标题为“Starbucks Tall Latte Price”,y 轴范围限定在 0 到 8 美元之间。
从图中可以很明显看出,西欧国家的价格较高,亚洲和南美国家的价格较低。这样的可视化代码可以用来比较任何一组定价数据,方便发现定价策略之间的区别。

改善建议prompt:
以上代码的横轴间隔能否放大,可以看清楚国家名称
Claude 应用 上午 9:36
可以,我们可以调整条形图的横轴标签间隔以使国家名称更清晰可见。有两种方法: