离开学术界?在进入数据或软件之前,请三思而后行
在信息行业工作有很多好处,但您应该注意权衡取舍。 尼尔斯·考塔尔茨
在每个学者的职业生涯中,他们都会有一段时间必须重新评估自己的职业规划。大多数博士生一开始都渴望成为教授,但只有大约0.45%的博士毕业生真正这样做。
有些是被系统逼出来的。学术就业市场是一场残酷的音乐椅游戏。在过去的几十年里,授予博士学位的数量激增,但教师职位的数量却停滞不前。根本没有适合每个人的空间。
许多人也自愿离开,厌倦了毫无意义的出版或灭亡的磨练,赢家通吃的融资周期,脆弱的短期合同,有毒的自我,无数的额外责任,家庭的压力,行政负担和平庸的薪水。
然而,对于学者来说,在“行业”中占据一席之地可能是一场斗争,特别是如果他们有博士后经验的话。长时间徒劳的求职会导致不安全感和绝望,尤其是那些牺牲了一生中最美好的岁月的学者,他们收集了一堆在当时享有盛誉的学术成就,但现在似乎毫无价值的奖杯。
长期求职现象通常反映了就业市场的怪癖——如果不是说普遍的功能失调——而不是学术个人缺乏能力。无论如何,它催生了一个寄生的职业教练和咨询服务行业,这些职业教练和咨询服务捕食这些失落的灵魂。
球场的说法是,学术界是一个黑暗和不受欢迎的地方(它部分是),而工业是应许之地,那里的草总是绿色的(它不是)。以几千美元的低价,您也可以[加入他们的社区/获得个人指导/获得培训材料/...],这将使您最终获得第一份梦想行业工作的技能!
数据和软件是行业职业道路,通常被推荐给即将成为前科学家的人。研究人员可以利用他们的分析思维和技术技能来解决 AI/ML、大数据、物联网和数字化方面的最大挑战!
是时候跳上炒作的火车了!为了更好地衡量,这个建议通常与友好的“学习编码”一巴掌配对。
这一信息已在学术界内化。炒作产生融资机会,研究通过在任何提案中加入强制性的人工智能流行语来遵循资金面包屑。AI / ML的博士正在激增。
为什么要攻读物理学或数学博士学位,而你可以通过直接从事一个在工业界引起轰动的话题而被录用?
LinkedIn学术影响者定期鹦鹉学舌地模仿“学习编码”模因。互联网和媒体使“技术”看起来像是终极的瓦尔哈拉,学术职业顾问坚持认为,该行业正在乞求聘请受过高等教育的博士。
宣传有效。许多崭露头角的研究人员现在进入博士学位,其明确目标是在之后从事数据或技术方面的职业。被洗白的学者正在报名参加Python训练营和MOOC,并将工业数据视为学术生涯的可靠后备计划。
从复杂数据中获得见解是科学家的核心竞争力;在行业中做同样的事情,就像数据科学家一样,应该会导致平稳的过渡,对吧?
现实情况是,数据行业的大多数工作远没有炒作、博客文章和报纸头条所暗示的那么迷人。很少有那些离开工业界的人回来讲述他们的故事,所以大多数学者对另一边的生活一无所知。本文旨在从一位前学者转为数据工程师的角度阐明好的和坏的。
我的个人故事 据统计,我是99%被洗白的学者中的一员。我获得了物理学博士学位,并以优异的成绩毕业。之后,在 COVID 大流行期间,我又在一家“世界知名”的研究机构担任了两年的博士后研究员。
我喜欢研究和科学,但在我的博士后合同结束后,没有明确的学术延续途径。于是我开始寻找“真正的工作”。
我以为我已经为这种可能性做好了充分的准备。尽管我的主要研究活动是在实验室进行的,但我在博士期间自学了Python编程,以便分析我的数据。
我也涉足机器学习,因为在2010年代中期,似乎每个人都必须了解XGBoost。在我的博士后期间,我为我所在领域流行的开源库贡献了带有自定义 GPU 内核的新算法,用于图像分析。
在这一点上,我认为自己是一个经验丰富的自学成才的Python开发人员和潜在的数据科学家,他应该能够立即过渡到行业职业。
最终,我还是花了半年多的时间申请才找到工作。我对公共职位发布的申请都没有去任何地方。我甚至从未参加过面试;我只是通过电子邮件被拒绝或幽灵。
最终,在朋友的推荐下,我有机会面试一家公司的数据工程职位。第一次面试导致了另一次面试,最终是工作机会,我接受了。这一事件是我的自尊心和我对纯粹精英正义的坚定信念的多次殴打中的第一次。
在担任数据工程师仅十个月后,我认输了。我不后悔这段时间;这是令人大开眼界和教育的。然而,我发现我发现自己的工作内容和新文化与我的个人目标和兴趣不可调和。
我的大部分经历都没有被职业教练宣传,可能是因为他们自己从未在这个领域工作过。如果你是一个即将被洗白的学者,正在考虑进入数据领域,我希望我在这篇文章中的观点能帮助你做出明智的决定。
免責聲明
这是一篇评论文章,根据个人经历、观察和他人的轶事汇编而成。您的发现可能会有所不同,具体取决于您为哪家公司工作、您的同事是谁、您的角色是什么、您在哪个国家/地区工作、您的背景是什么以及您在生活中的优先事项是什么。
我在数据行业工作了很短的时间,所以我的经验可能不代表更长的职业生涯。当我从拥有STEM博士学位的人的角度写作时,这也是我的主要目标受众。
好的,您将获得可观的薪水
关于数据和软件工资的传言是真实的。如果金钱是你的主要动力,你应该考虑采取行动。鉴于你第一次进入学术界,你要么不那么看重金钱,要么你很天真。
尽管如此,在当代社会中,我们感知到的很多自我价值都来自收入,获得高薪感觉很好。如果您有家庭或其他受抚养人,这一点将在您的计算中占据更重要的因素。
在西方,作为一名受薪开发人员或数据专业人士,您将舒适地居住在收入者的高百分位。在某些国家/地区,通过成为自由职业者并努力优化税收,您可能会做得更好。
我一直在西欧工作,所以即使在学术界,我仍然可以靠博士后的薪水过上舒适的生活(我的心与所有饥饿的美国博士后同在)。
尽管如此,我的有效净收入还是跃升了约40%,从学术界的博士后到数据工程,平均每月从约2500欧元跃升至3500欧元。
此外,我还获得了公司汽车,加油卡和其他福利。如果我在这个领域呆了几年并得到晋升,我的薪水预计增长速度将比学术界快得多。
工业工资也有另一面:完全缺乏透明度。
作为一名博士后,我的工资是固定的。我可以查看表格以查看所有类别和相关工资。我知道所有其他博士后的收入都和我完全一样。
在工业界,你不会知道你的同事赚了多少钱。一家公司想付给你你能容忍的最少金额,所以为了给自己争取最好的交易,你必须成为一个无情的谈判者。
学者们不习惯讨价还价,期望制度是公平的,并且通常对滥用有很高的容忍度。由于他们缺乏可接受的工资的良好参考点,他们处于弱势谈判地位。这意味着他们最终可能会在桌子上留下很多钱。
你将有工作之外的生活
来自学术界,你会发现工业界大多数工作的节奏令人毛骨悚然......寒意。你有周末和假期可以做你喜欢的事情。
也许您甚至可以与家人共度时光!当周五下午 5 点到来时,您可以关闭笔记本电脑,直到周一忘记一切。
学者可以做到这一点,但现实最好用这部漫画来概括。就我个人而言,我一直觉得自己在学术界赛跑。没有花在工作上的时间是浪费时间。
我总是可以写另一篇论文,另一份提案,另一篇会议摘要。在我的合同到期之前,我感到有一种强烈的冲动去做这些事情,这样我就可以找到下一块漂浮的冰跳到上面。
回想起来,考虑到我的工作速度,我永远不可能组建家庭。
在许多方面,学者就像企业主,企业是他们的学术生涯。市场竞争激烈,因此您必须尽一切努力保持领先地位。不同之处在于,如果学者设法克服困难,他们就不会获得经济回报。
科学家竞相逐底的主要副作用是,社会充斥着越来越多的低质量出版物,这些出版物永远无人阅读。
同样,这枚硬币还有另一面。
作为一名学者,我工作时间不健康,不仅因为我觉得有必要,还因为我对我的研究充满热情。我很在乎,因为我在探索自己的想法,满足自己的好奇心。我的工作同时也是我的爱好。
作为一名受薪开发人员,我必须按照别人的想法工作,并按照别人的优先事项生活。**这些优先事项源于股东的目标,我感到与股东的目标非常疏离。意义和自由的丧失扼杀了我以前编写代码和解决问题的所有乐趣。
我的工作现在只是一份工作。周五我松了一口气,关闭了笔记本电脑,周一也不愿意再次打开它。
总会有新的机会
对开发人员和数据专业人员的需求很高,所有行业都可以找到职位空缺。在这个领域找到第一份工作是很困难的——为什么我会去写另一篇文章。
但是,一旦您进入并在LinkedIn上获得了关键字友好的职位,招聘人员就会像苍蝇一样缠着您。
在一连串的垃圾邮件下,包括不相关的工作宣传和“聊聊你的职业”的请求,你可能会发现很难以专业的方式将它们赶走。
即使你离开了这个领域,招聘人员也会跟随。我想这种体验与女性在基于滑动的约会应用程序上的经历有相似之处。
当你已经有工作时,招聘人员海啸很烦人。但至少你会不断得到肯定,你的技能是可取的,第二次找工作不会那么难。这可能是一个发展你的谈判技巧的机会。
您将能够远程工作 这部分归因于 COVID 大流行。如今,100% 的远程工作更难获得,但 60-80% 的软件和数据远程工作仍然是我居住的常态。
要履行开发人员的基本职责,您无需在特定位置。就个人而言,我发现能够在家工作并避免通勤是一个很大的福音。
我的一些同事甚至能够在另一个国家生活和工作。这对于大多数其他工作是不可能的。
远程工作的一个缺点是你可能会感到孤独和与团队的联系缺乏。通过面对面交流促进学习他人和遇到可能有利于你职业生涯的随机机会。
在学术界,你主要是一个人工作和学习。在行业中,你会发现这更难做到,因为没有文献可以消耗;要迅速提升,你必须从其他人的大脑中提取知识。 你将获得工作的另类观点。
如果别无选择,在数据或者软件行业工作一段时间将会让你获得只有通过参与才能获得的新工作观点。在我做博士后期间,我开发了复杂的开源软件,然而在产业中作为团队一部分开发简单软件,让我的开发风格得到了改进。
我学会了寻求不同兴趣的探索取代重复而具有实用性的解决方案。
此外,行业工作总体上会给你一个关于世界运作方式的不同视角。就业市场是如何运作的。如何运营一个多样化的组织。
你会了解哪些技能才是社会真正重视的——好处还是坏处。你会认识到自己是市场参与者,时间有一定价值。
你会笑着回顾自己的学术成就——一部分是出于沮丧 ——它并没有多大意义。你花费数月深夜准备信手交付给出版商的论文。
从行业工作中学到的东西不太可能增强你的智力能力。但是它们很重要。
坏的
你不会处理有趣的问题
头条新闻、炒作和职业教练撒了谎:很少有数据和软件工作像研究那样刺激智力。
这些工作中的绝大多数都是为了支持企业解决其目前遇到的问题。问题的重要性是通过其对底线的影响来衡量的。
这些问题中的大多数对于有学术背景的人来说都是相当无聊和不满意的。
研究人员喜欢研究与发现机制有关的困难和开放式问题;找到解决方案需要发明新方法才能解决这些问题的问题。琐碎的解决方案和实际细节的问题留给“未来研究”。
相比之下,工业中的数据和软件问题关注点很窄,并且是根据实现特定结果来制定的。
这一结果必须始终与公司的主要目标联系在一起:保持业务,增加收入,降低成本。
这些问题在各个部门都是普遍存在的,因此社会花费了大量的人力资本来一遍又一遍地解决几乎相同的问题。从技术和/或分析的角度来看,问题往往是直截了当的;有人——你——只需要花时间去解决它,直到无聊的细节。
行业问题的主要挑战很少是问题本身,而是如何以最少的努力以最快的方式解决它。
这是因为解决问题最昂贵的部分是支付数据或软件专业人员的时间,因此这是管理层应该最小化的第一个参数。
有趣的是,旨在最大限度地提高工人生产力的经常性会议和微观管理过程很少被考虑在拖累生产力和浪费人力资本方面。
快速解决问题意味着最大限度地(重新)使用久经考验的方法和工具,并避免需要长时间深入思考的场景。
在数据科学中,这意味着您不会开发自定义 ML 算法;您将浏览现有模型的目录并选择足够好的模型。
大多数情况下,你会花几天时间将它们放入搅拌机中制作合奏。在软件开发中,您不会从头开始设计新颖的优化系统;
您将用胶带将现有组件(通常是由热情的业余爱好者编写的开源软件)连接在一起 - “集成”现有组件。
您将严重依赖框架,并创建工具来帮助解决相同平凡和琐碎任务的细微变化。与我交谈过的学者在数据行业工作了一段时间,他们承认“他们错过了数学”。
对于他们中的一些人来说,这种悲伤的痛苦会随着时间和金钱而消退。
将工业问题视为微不足道似乎很傲慢。毕竟,不是所有的现代公司都在大力投资人工智能和机器学习,以成为“数据驱动”吗?
这难道不是企业历史上的一个变革时刻,科学家的分析技能成为企业在动荡的市场水域中航行不可或缺的资产吗?
这是职业顾问和行业影响者会让你相信的,但我会争辩说:不。
首先,任何值得一提的公司都是数据驱动的,早在AI / ML炒作列车兴起之前。他们有一个“商业智能”部门,配备了数据分析师,他们将处理公司的数据,并将其提炼成报告供领导层使用。
数据分析师的工作最接近研究科学家的工作:收集数据以回答问题,处理这些数据,得出并报告见解。然而,数据分析师通常是公司的入门级角色;无需博士学位。
科学家和数据分析师有什么区别?他们处理的数据类型。
科学家需要专门的领域知识来理解他们的数据。在得出任何结论之前,可能需要使用在晦涩软件中实现的自定义算法来处理数据。此外,科学家们努力控制数据收集工作,以探索因果关系。
相比之下,公司数据是公司活动的直接可解释日志:企业拥有哪些资产,销售收入,工资单成本是多少等。数据是操作的副产品。
理解这些数据需要对金融术语有一定的基本熟练程度,并了解公司特定的惯例。处理它需要Excel能力和对算术的基本理解。平均值和总和,带有上升或下降的线的图表,以及健康的常识通常足以驾驭公司。
始于 2010 年代中期的 AI/ML 革命并没有改变商业性质,但它确实在商业领袖中创造了大量的 FOMO。
公司争先恐后地将这项技术整合到他们的产品、服务和流程中,他们聘请了大批数据科学家来实现这一目标。
这些数据科学家中有许多是博士,因为当时数据科学被认为是一门高度学术的学科。实际上,公司正在寻找熟悉scikit-learn API的分析师。
虽然机器学习技术对于高维空间中的数据挖掘和预测很有用,但许多企业本末倒置。他们旨在解决的大多数问题仍然像以前一样平凡,无需 ML。
即使对于可能从ML中受益的问题,低数据质量,稀疏性,低/不存在相关性和噪声等问题也经常被方便地掩盖,相信闪亮的新算法会神奇地解决这些问题。
由于很少有人了解统计学,因此直到今天,许多数据科学家的任务是调整模型超参数以获得微不足道的准确性增益。
此外,由于公司数据是临时收集的,因此几乎不可能找到因果关系。这意味着数据科学通常被简化为一种美化的曲线拟合练习。
随着数据科学炒作的冷却,公司开始意识到,数据项目中的大部分时间、精力和挑战实际上都花在检索、清理和将数据转换为可以输入现成 ML 模型的格式上。
此外,他们发现他们实际上无法使用数据科学家制作的黑客Jupyter笔记本。因此,更加强调构建支持基础设施和从模型中创建软件产品,从而诞生了数据工程师和ML工程师的角色。
根据我自己的经验,这些角色正是大卫·格雷伯(David Graeber)在他的《胡说八道的工作》(Bullshit jobs)一书中所说的“管道锥形”的定义。
你的任务是解决一个本来就不应该存在的问题,如果其他人的工作做得好,你就不会存在。
然而,事实证明,对管道锥度的需求很高:在数据空间中,各种工程职位的职位空缺比科学职位要多得多。
如今,他们甚至可以要求比数据科学家更高的薪水;另一个迹象表明,如果不能利用这些特征并引导到盈利努力,公司对纯分析技能或教育水平的重视程度较低。
当然,工业界也有有趣的工作。存在以研究和创新为导向的数据和软件工作。毕竟,大型科技公司拥有开发世界 ChatGPT 的研究部门。
但这些工作并不是为普通的“我在Coursera上完成了机器学习课程”的博士毕业生保留的。工业界以研究为导向的职位市场与学术界一样竞争激烈。
研究既昂贵又有风险。公司希望最大化下一季度的利润;投资研究与这一目标截然相反。
大多数用于研究的资金可能已经被烧掉了:短期内它不会给投资者带来任何回报。这就是为什么几乎所有的基础研究都是由社会通过税收资助的。
总之,绝大多数数据和软件工作的存在是为了向企业提供基本服务。这涉及处理大多数无聊和重复的问题。
将ML投入其中不会使问题更有趣,也不会使相关工作更具智力刺激性。取而代之的是,管道锥形作业激增,以支持 ML 应用程序的微小内核。
你扔掉了你多年的生命 你可能会发现自己正在经历对垂死的学术生涯的悲伤的五个阶段。请允许我投下一些真相炸弹,希望能让你更快地进入接受阶段。
很少有公司关心你的学历。大多数人甚至会完全忽略它们。在某些情况下,他们会对您不利。
你可能已经发现你作为博士学者的3-7年是一次变革性的经历,但如果你决定获得一份数据或软件工作,你将从阶梯的底部开始。
任何博士毕业后的学术经历都只是在延迟同样不可避免的结果。你会有比你更高级的年轻同事,而你的同龄人将遥遥领先,以至于你永远赶不上。考虑到你知道你拥有的所有专业知识和技能,考虑到你所做的牺牲,考虑到新工作并不是那么难开始(见上一节),你会感到羞辱。
通过努力成为人类知识前沿的一部分,您有效地阻碍了自己建立基本的技术职业。
职业教练建议您强调您作为学者获得的所有“可转移技能”,这些技能在行业工作中也很有用:数据分析、批判性思维、项目管理、领导力、有效的口头和书面沟通......这样的例子不胜枚举。对于技术工作,可以将编程添加到此列表中。
不幸的是,公司通常不会将这种经验等同于在行业工作中获得的相同经验,这就是为什么你会退缩的原因。您的“真实体验”仪表开始计算您第一份非学术工作的第一天。那一天你对LinkedIn招聘人员来说也很有价值。
为什么?
首先,公司并不完全了解学术工作。对他们来说,你是来自另一个国家的陌生人,他们觉得你不了解文化,说着奇怪的方言。“在一个行业多年的经验”是一个方便且常用的代理来评估你的价值,你不适合盒子。
其次,与学术界相比,数据和软件世界的运作方式完全不同。学者大多自己和自己开发代码。精通技术的人可能会为开源软件做出贡献。
相比之下,工业软件开发非常注重产品、团队合作、可维护性和健壮性。你不熟悉这种开发方式。因此,您是晚辈。
最后,公司向开发人员和数据专业人员支付非常具体技术的经验,而不是他们对学习的渴望或增长潜力。即使你知道如何编程,你也会缺乏很多硬技能和实践经验,这些工具和库在学术界并不常见(例如云服务、pyspark、kubernetes 甚至 SQL)。
要了解这些技术的基础知识,您将需要几天到几周的时间。掌握它们可能需要数月到数年的时间。因此,您是晚辈。
作为一名研究科学家,你的困境是,你同时对大多数工作的高度资历过高和资格不足。在项目管理等一些行业工作中,您可能会侥幸出售您的可转移技能。
但是在技术工作中,你需要在一个非常特定的领域展示硬技能,而你只是没有它们。你不知道“这里的事情是如何完成的”。您是一名申请成为电工的电气工程师。
要达到录取阶段,你必须接受放弃你的学术装饰,敞开心扉学习完全不同的东西,只着眼于成为一名代码工匠的目标。您选择技术行业的工作是因为您想编写代码,而不是制作文档、论文或幻灯片。
你已经证明你可以学得很快,所以你所能做的就是奔跑并努力追赶。你能希望的最好的事情是,在你的旅程中的某个地方,你可以掸掉你作为一名学者学到的利基技能。
您是可替换的资源 随着你在研究生涯中的进步,这个领域会减少到极少数人。在某个时候,这个星球上所有在这个主题上具有类似专业知识的人都集中在一个房间里,他们每年都会在会议上见面,听彼此无聊的PowerPoint演讲。你是独一无二的。你是世界上为数不多的专家之一,感觉很好。
唯一的问题是,除了那个房间里的人,地球上几乎没有其他人关心。除了纳税人之外,没有人会购买您的知识。
相反,您将是支付会议和出版费用的人,以绝望地尝试宣传您的研究。也许如果你到了资深教授阶段,并且有一个对媒体友好的个性,你会被认为是值得在新闻上回答基础科学问题。
相比之下,行业会倒退,购买您作为数据或软件专业人员的技能。但是,您的技能将被视为商品。虽然工人太少,无法满足对软件管道锥体的需求,但您仍将是具有功能相同技能的众多人之一。
决定您的市场价值的唯一区别指标是您接触过哪些技术以及您拥有多少年的经验。我见过计算机科学博士与心理学学士学位的比率相同,因为他们做着同样的工作。
当然,证书本身不应该决定薪水。然而,计算机科学家的工作效率至少是其两倍,并且更善于解决问题,因为他对技术有深刻的理解,这一事实并没有被纳入任何商业方程式。
个人之间的差异在团队层面是显而易见的,但对于有钱的人来说是无法量化或可见的。
对于企业来说,你独特的人格将被抽象掉,因为它是混乱的,复杂的,很难在电子表格中捕获。一家公司希望他们的所有运营都像工厂一样,具有可预测、简化和重复的流程。
从今以后,你只不过是一个“资源”,是众多资源中的一员,有能力以正确的顺序键入键以使计算机做事。您是应该得到最佳利用的数字劳动者。
您的潜力是根据可用人日数来量化的。您的工作效率是通过在 Jira(占主导地位的 IT 项目管理工具)中拖来拖去的票证来跟踪的。如果你在数字工厂车间里因无聊和单调而死去,第一个问题是哪种资源将取代你。
软件开发应该努力像制造业一样的想法被流行的IT管理学说(如Scrum)和精益的衍生产品所延续。行业领导者倾向于以货物崇拜的方式采用各种管理时尚,而不是根据证据进行迭代。
科学家对教条过敏,但因为你现在是公司等级制度底层的资源,你对如何管理你或你将做什么没有发言权。这些任务是为“思想家”和“计划者”保留的。这将我们引向下一个主题:
您的意见和想法无关紧要
鼓励学者对一切持怀疑态度——尤其是权威和大众情绪。他们应该质疑自己的每一个信仰,永远不应该在没有确凿证据的情况下评估任何陈述的真实性。
如果你有一个好的想法和足够好的论证来支持它,无论你的学术等级如何,你都可以自由地尝试一下。
工业界不喜欢怀疑论者,特别是如果他们处于等级制度的底部。困难的问题和挑战现状被认为是违背原则的,使团队凝聚力复杂化。你被聘为代码工匠。除此之外的一切都在你的影响范围之外。
作为团队一部分的技术资源,相信一套共同的价值观比你持有的价值观实际上是真实的要重要得多。工业界不是在寻求真理。工业界没有学术或哲学,只有思想领导力。
学者旨在研究和评估文献,并通过科学方法提出和检验假设来获得新知识。
思想领袖延续了将原始扭曲应用于旧基本概念的意识形态,并将其打包成TED演讲或技术博客文章。其中一些想法在社区中获得了牵引力,从而将思想领袖提升为权威人物。由于受欢迎程度和权威性,但完全缺乏确凿的证据,新意识形态被广泛接受。
公司盲目采用思想领导力会导致各种卡夫卡式的情况,破坏生产力的会议,以及表演性的废话,你将不得不作为技术资源涉足。企业中的Scrum仪式值得特别提及,但更详细的介绍超出了本文的范围。
你总是被告知你可以提供反馈,挑战事物,提出新的想法。只有当你不践踏团队所认同的基本价值观,或者侵犯领导领域时,这才是正确的。
如果你觉得被Scrum微观管理,你将无法挑战它。如果您发现单元测试在编写数据管道方面不是很有帮助,您可能会因破坏团队的 TDD 理念而受到谴责。
与直觉相反,墨守成规甚至阿谀奉承是脱颖而出的优越策略。你知道为什么LinkedIn到处都是疯子,抛出有毒的积极性畏缩吗?因为它得到了回报。
好消息是,你自己总是可以成为思想领袖,试图改变潮流。不需要凭据、证据或数据,只需一点原创性和健康的销售技巧就可以了。你可能会认为这篇文章是一个蓬松的思想领导力,除了大部分企业IT领导层不会乐意阅读它。
技术工作是死胡同
人类对进步有着永不满足的渴望。
从理论上讲,学术界的进步意味着不断突破人类知识的界限。大多数学者声称这是他们的主要驱动目标。
然而,在实践中,他们只能通过留在学术游戏中来做到这一点。这需要收集更多的声望点数:
获得教授头衔,在《自然》杂志上发表文章,在会议上发表主旨演讲,获得享有盛誉的资助,获得某种奖项,......在某些时候,赢得比赛本身就成为一个目标,自然选择将精明的野心家推上了队伍。
在工业领域,进步意味着每个季度都在增加股东价值。工人没有实现这一目标的内在动力,因此公司通过将职业阶梯和夸大的职称将工作经验游戏化来制造它。
职业进步的幻觉起到了隐喻胡萝卜挂在工人面前的目的,这样他们就会继续推动利润工厂。
许多公司能够向员工灌输思想,并说服他们“增值”是一项崇高的事业,他们应该牺牲生命中最美好的时光。最成功的公司说服他们的员工,公司的使命对社会有益。
作为数据或软件领域的工作者,您为股东价值做出了贡献,但通常是间接的。除非你为一家产品是软件的科技公司工作,否则你主要为内部客户提供服务。这意味着您最终被视为一种成本;为企业提供服务的资源,使他们能够执行增值活动。
从这个角度来看,很容易看出为什么职业发展在技术职业中是一个有问题的概念。如果您在公司层次结构中晋升,您将不再为企业提供相同的有用服务,而是需要管理人员。
或者,你可以从初级晋升到中级,再到高级,以奖励你多年的经验,而无需进入管理层。公司声称,这个专家轨道与管理轨道一样有回报。当然,你的薪水会增加,但你仍将是层次结构底部的资源。
当您进入工业界时,您还可以亲身体验呆伯特原理和普特定律。在学术界,并非每个教授都同样聪明,但至少他们从底层爬上来,达到了现在的位置,你可以期待一个基本的能力和对成为一名研究人员意味着什么的理解。
在工业界,管理一个软件工程团队而不写过一行代码显然是非常正常的。在跛脚鸭 IT 管理层的领导下工作,他们觉得有必要通过在毫无意义的计划和协调会议上浪费您的时间来证明他们的存在是令人崩溃的。
在IT领域似乎存在一个漏洞:“架构师”职业轨迹。架构师不必做技术工作,也不必管理人员。在企业环境中,此角色涉及成为高级别会议和讨论的专业参与者,这些会议和讨论与正在完成的实际技术工作无关。
架构师对软件系统进行设计和绘图,这些设计和绘图不会完成;当然不是按照他们的计划。他们甚至不需要知道如何自己实现任何东西,但他们应该熟悉 UML。建筑师通常类似于Dilbert原理的字典示例。
最聪明的人意识到,技术工作总是沦为企业中的繁重工作,所以他们完全避免了它。为了产生最大的感知影响——从而产生最大的发薪日——只应该解决公司最高层的问题。这些问题中很少有技术性的。
因此,为了对价值创造产生最大的感知影响,您必须直接与最高管理层合作或成为最高管理层。这样做的最佳机会是通过进入管理咨询领域(贝恩、麦肯锡或BCG是必须的)和/或为自己购买MBA学位来创造的。
这是捷径的职业发展轨道。你不会通过从开发人员那里工作来爬上去成为CEO。当然不是在浪费了你在学术界的第一个关键年份之后。
但是,如果您喜欢编程和数据分析怎么办?如果你不在乎成为CEO,但仍然想做有意义、有趣、有价值的技术性工作,并作为一个有想法、有创造力和智慧的人受到尊重,该怎么办?
太糟糕了,这不是企业的运作方式。
有两种方法可以充分利用技术职业。
首先是接受你作为资源的身份,忘记职业发展,并出售你作为自由职业者/顾问的时间。在这种情况下,你向市场投降,但成为你自己的股东和首席执行官。
第二是确保你建造的任何东西对公司的底线有直接影响。这意味着在一家科技公司工作,软件是产品和核心业务。当然,这些职位比银行的开发人员职位更具竞争力。
最有回报但风险最大的可能是尝试将两者结合起来:创建自己的软件并将其作为产品出售给公司。
总之,除非你在一家以技术为产品的公司工作,否则大多数技术和数据工作(被视为)对业务的低影响和低价值服务。只要你是一个实施者,你就永远被困在底层,作为一种资源,随着傻瓜的异想天开四处游荡,有代理权来做决定。
结论 学术界正处于危机之中,几十年来一直如此。这是一个金字塔计划,为了一些顶尖的学者的利益,烧毁雄心勃勃的年轻人。这是一个狗咬狗的世界,每个人都在为面包屑而战。
攀登金字塔的机会微乎其微,但如果你确实战胜了困难,你将牺牲一切。如果你不能爬上去,你在学术界唯一的未来将是博士后炼狱。最终,系统会迫使你出局,没有任何可展示的东西。
另一方面,研究工作提供了智力挑战和创作自由的独特组合。这是一种职业,在追求知识的驱使下,自我激励的个人茁壮成长。饥饿的艺术家和饥饿的科学家的共同点比人们想象的要多。
不幸的是,如果每个人都通过玩好奇心而获得报酬,整个社会就无法运作。从清洁到建筑,到制造,再到软件开发:从以“这可能在......”开头的句子开始,有很多繁重的工作要做。到人们可以使用的实际产品。
至少在软件和数据方面,您可以在家中舒适的椅子上悠闲地工作,同时获得良好的补偿。
“只是一份工作”这种工作并没有错。然而,围绕数据和软件的炒作和职业建议正在误导许多学者,让他们认为他们将运用他们的专业知识和技能来研究行业发生的人工智能革命中的突破性应用。
等待大多数人的现实将是无聊、单调、无目的、微观管理、非人化、低欣赏和停滞。只是堆上的另一个资源,用于构建没人需要的低价值废话。
学习编码对任何学者来说都是很好的建议,但为了保护数据或软件工作而这样做并不适合所有人。
本文由 mdnice 多平台发布