从诺贝尔奖到鬼畜视频

十几年前,我还在学校里学习计算机的时候,机房里的电脑整天都不关机,于是常会装点新奇的程序在上面跑。Rosetta@home,一个利用空闲电脑算力计算蛋白质结构的分布式程序就是其中之一。

也装过挖矿程序,那会儿有人用10000个比特币买了2个披萨。

我还选修了门课,叫《人工智能》。课程大作业,我做了一个手写数字的识别。再后来我把相关方法扩展到了人体动作识别,成了我的毕业论文。

如果去跟当时的我说,二十年内会有人花几万美元买1个比特币,而人工智能可以在写文章、画画、开车等方面做到堪比人类的水平。我大概会觉得你在讲科幻故事。

看看如今……好像确实有点科幻。

诺贝尔奖

在刚刚揭晓的2024年诺贝尔奖中,物理学奖和化学奖都颁给了与计算机/人工智能相关领域的学者。

物理学奖的获得者是约翰·霍普菲尔德与杰弗里·辛顿,以表彰他们利用人工神经网络进行机器学习的奠基性发现和发明。

人工神经网络可以说是当下AI爆发式增长的技术根基,间接影响了众多领域,绝对配得上一个诺奖。只是诺奖没有计算机奖也没有数学奖,放在物理学奖下面着实有点让人迷惑。四舍五入我也算是物理学相关专业咯?

9f8e896b6bd3c011795b32d277aea3fc.jpeg

化学奖的一半授予了大卫·贝克,以表彰他对蛋白质计算设计的贡献。这个贡献就是文章开头提到的Rosetta软件,可以通过输入蛋白质结构计算对应的氨基酸序列,进而合成蛋白质。

另一半授予戴密斯·哈萨比斯和约翰·朱默帕,以表彰他们对蛋白质结构预测做出的贡献。这个指的是AlphaFold,一个可以通过给定的氨基酸序列,计算蛋白质的三维空间结构的工具。

383d0a03fe42b5e1e5458fa9f0b6dc8f.png

用一个通俗的方式来形容AlphaFold的作用:之前一个硕士生通过几个月的实验,测定一个蛋白质的真实结构,就够发论文毕业了。而现在AlphaFold在AI的加持下把这事给干到了1秒钟算出好几个,可以说是把这个赛道都卷没了。

我们老说AI会抢了打工人的饭碗。现在你看并不是的,科研人的饭碗它也一样抢。

马斯克

前几天特斯拉开了场发布会,会上当然也少不了AI。之前就露面过的“擎天柱”机器人,现在已经可以端茶送水、唱跳RAP了。

d598e2dda4832e39a273218fdb5b1ee8.png

另外展示的就是无人驾驶新产品:Cybercab和Robovan,一个是无人出租车,一个是无人面包车。没有方向盘和踏板,除了座位就只有个大屏幕可以交互,看着很有未来感。

b2582886144bb04dd9165dd8d3d9fdef.png

商业模式也很未来:它是台成熟的无人车,不但会自己开车,还会自己洗车,甚至自己跑滴滴帮你赚钱。

会后,股民立刻用真金白银回应了特斯拉:股价开盘直接砸下9%,放在大A得跌停板了。看来面对马斯克画的大饼,韭菜们的格局还是小了。

不过老马应该不太在意,因为特斯拉这边丢掉的场子,没过两天就在SpaceX身上给找回来了:星舰完成第五次试飞,并成功完成了“筷子”夹火箭的操作--助推器返回并被发射塔上的机械臂捕获。这意外着离可重复使用的重型运载火箭又近了一步。

a3fc22d7ecb477883a7b5025b8a9fb4b.jpeg

据说马斯克想要葬在火星。从这个角度来看,SpaceX之于老马,约等于在给秦始皇建陵墓咯?

雷军

前几天火的除了“钢铁侠”马斯克,还有“雷神”雷军,不过这次不是因为小米手机,也不是Su7,而是他再度攻占视频鬼畜区。

bb5ee41e1b4173222920b9eabfde703e.png

所谓鬼畜视频,简单讲就是拿一些视频素材重新剪辑,制作出搞笑效果的二次创作,算是一种小众亚文化。

不过现在就连这,也被AI颠覆了。过去要人工慢慢从素材里寻找、拼凑、调音,现在靠训练AI语音包,直接通过文字生成音频。

66a0cb9f571e73955a12dadde8e0088e.png

而国庆期间,就跟风出现了大量用雷军语音包制作的各种“锐评”视频,赛博雷总在网上“骂”了一整个长假。好不好笑另说,侵权违法是没跑了。

雷总可以不计较,但这两年AI的高速发展,带来的各种风险和挑战是没法忽视的。也难怪很多AI界的大佬级人物也在呼吁,现阶段应该重视起AI的安全性,不能一味追求技术和商业化。

刚刚获诺奖的辛顿就是其中的典型代表,他在获奖后的采访中都不忘怼上一句:很自豪他的学生解雇了山姆·奥特曼(OpenAI的CEO)。

c7f756a4332a86d7ae28c21df34d64f3.png

那么接下来,人类还会整出什么样的AI,AI又会把人类带向何方呢?


Crossin的新书《码上行动:用ChatGPT学会Python编程》已经上市了。本书以ChatGPT为辅助,系统全面地讲解了如何掌握Python编程,适合Python零基础入门的读者学习。【点此查看详细介绍】

购买后可加入读者交流群,Crossin为你开启陪读模式,解答你在阅读本书时的一切疑问。

Crossin的其他书籍:


添加微信 crossin123 ,加入编程教室共同学习~

3b9ee07e938596fdb8d117cd644291be.jpeg

感谢转发点赞的各位~

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Crossin的编程教室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值