动态规划(DP)

DP的核心就是发现一个最优结构使得当前的结果可以用之前计算过的结果表示. 至于怎样找到这个结构, 呵呵, 你猜?

DP是把计算的中间过程存储下来防止下一次计算时候重复计算是一种以空间换时间的做法。DP的思想,动态规划,更像是走一步规划一步,只要把问题规划为走一步规划一步,问题就可以逐步解决。

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

来源:力扣(LeetCode)

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

45 给你一个非负整数数组 nums ,你最初位于数组的第一个位置。

数组中的每个元素代表你在该位置可以跳跃的最大长度。

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

假设你总是可以到达数组的最后一个位置。

示例 1:

输入: nums = [2,3,1,1,4]
输出: 2
解释: 跳到最后一个位置的最小跳跃数是 2。
     从下标为 0 跳到下标为 1 的位置,跳 1 步,然后跳 3 步到达数组的最后一个位置。

来源:力扣(LeetCode)
 

int jump(vector<int> &nums)
{
    int ans = 0;
    int start = 0;
    int end = 1;
    while (end < nums.size())
    {
        int maxPos = 0;
        for (int i = start; i < end; i++)
        {
            // 能跳到最远的距离
            maxPos = max(maxPos, i + nums[i]);
        }
        start = end;      // 下一次起跳点范围开始的格子
        end = maxPos + 1; // 下一次起跳点范围结束的格子
        ans++;            // 跳跃次数
    }
    return ans;
}

这一题应该是一个典型的动态规划,将前一步的结果记录,再走下一步,这样一步一步来就知道最终的结果

1

优化
从上面代码观察发现,其实被 while 包含的 for 循环中,i 是从头跑到尾的。

只需要在一次 跳跃 完成时,更新下一次 能跳到最远的距离。

并以此刻作为时机来更新 跳跃 次数。

就可以在一次 for 循环中处理。

int jump(vector<int>& nums)
{
    int ans = 0;
    int end = 0;
    int maxPos = 0;
    for (int i = 0; i < nums.size() - 1; i++)
    {
        maxPos = max(nums[i] + i, maxPos);
        if (i == end)
        {
            end = maxPos;
            ans++;
        }
    }
    return ans;
}

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
         
        int p=0;int leftnum=nums[0],rightnum;
        int now=leftnum;//now 用来存储最大的值
        for(int i=1;i<nums.size();i++){
            if(leftnum<0&&leftnum<nums[i])
            leftnum=nums[i];
            else leftnum+=nums[i];
            if(now<leftnum)
            now=leftnum;
        }
        return now;
    }
};

leetcode 70

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

虽然是动态规划,我第一个想的是递归,然鹅,我递归还不会用函数来表示,有无大佬用递归解答一下

198. 打家劫舍

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。

给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

示例 1:

输入:[1,2,3,1]
输出:4
解释:偷窃 1 号房屋 (金额 = 1) ,然后偷窃 3 号房屋 (金额 = 3)。
     偷窃到的最高金额 = 1 + 3 = 4 。

来源:力扣(LeetCode)
 

动态规划的的四个解题步骤是:

  • 定义子问题
  • 写出子问题的递推关系
  • 确定 DP 数组的计算顺序
  • 空间优化(可选)

那么对于这一道题该如何思考。。。动态规划,一步一步来 

可以看到,子问题是参数化的,我们定义的子问题中有参数 kk。假设一共有 nn 个房子的话,就一共有 nn 个子问题。动态规划实际上就是通过求这一堆子问题的解,来求出原问题的解。这要求子问题需要具备两个性质:

原问题要能由子问题表示。例如这道小偷问题中,k=nk=n 时实际上就是原问题。否则,解了半天子问题还是解不出原问题,那子问题岂不是白解了。
一个子问题的解要能通过其他子问题的解求出。例如这道小偷问题中,f(k)f(k) 可以由 f(k-1)f(k−1) 和 f(k-2)f(k−2) 求出,具体原理后面会解释。这个性质就是教科书中所说的“最优子结构”。如果定义不出这样的子问题,那么这道题实际上没法用动态规划解。
小偷问题由于比较简单,定义子问题实际上是很直观的。一些比较难的动态规划题目可能需要一些定义子问题的技巧。

int rob(vector<int>& nums) {
    if (nums.size() == 0) {
        return 0;
    }
    // 子问题:
    // f(k) = 偷 [0..k) 房间中的最大金额

    // f(0) = 0
    // f(1) = nums[0]
    // f(k) = max{ rob(k-1), nums[k-1] + rob(k-2) }

    int N = nums.size();
    vector<int> dp(N+1, 0);
    dp[0] = 0;
    dp[1] = nums[0];
    for (int k = 2; k <= N; k++) {
        dp[k] = max(dp[k-1], nums[k-1] + dp[k-2]);
    }
    return dp[N];
}

空间优化

int rob(vector<int>& nums) {
    int prev = 0;
    int curr = 0;

    // 每次循环,计算“偷到当前房子为止的最大金额”
    for (int i : nums) {
        // 循环开始时,curr 表示 dp[k-1],prev 表示 dp[k-2]
        // dp[k] = max{ dp[k-1], dp[k-2] + i }
        int temp = max(curr, prev + i);
        prev = curr;
        curr = temp;
        // 循环结束时,curr 表示 dp[k],prev 表示 dp[k-1]
    }

    return curr;
}

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值