STL二分查找的使用

本文深入探讨了STL中的二分查找算法,包括lower_bound和upper_bound函数的使用方法,以及它们在有序数组中查找特定值的应用。通过具体代码示例,展示了如何定位大于等于目标值的第一个位置和大于等于目标值的最后一个位置。
摘要由CSDN通过智能技术生成

STL二分查找

使用对象:有序数组

头文件:algorithm

lower_bound()返回值是一个迭代器,返回指向大于等于key的第一个值的位置
函数参数中的数组边界a,a+8为左闭右开。查找失败返回后一个地址(越界地址)

    #include <algorithm>
    #include <iostream>
    using namespace std;
    int main()
    {
    	int a[]={1,2,3,4,5,7,8,9};
    	printf("%d",lower_bound(a,a+8,6)-a); 
    	
     return 0;	
    } 

输出:5

将key换成10,所有val都小于key,返回last的位置

#include <algorithm>
#include <iostream>
using namespace std;
int main()
{
	int a[]={1,2,3,4,5,7,8,9};
	printf("%d",lower_bound(a,a+8,10)-a); 
	
 return 0;	
} 

输出: 8

upper_bound()函数,它返回大于等于key的最后一个元素

例题:CF1077E
AC代码:

#include <bits/stdc++.h>
using namespace std;

const int maxn = 1e6 + 7;

int a[maxn];
map<int, int> mp;

int main()
{
	int n;
	scanf("%d",&n);
	int cnt=0,x;
	for(int i=1;i<=n;i++)
    {
		scanf ("%d",&x);
		if(!mp[x])
		{
			mp[x]=++cnt;
		}
		++a[mp[x]];
	}
	sort(a+1,a+cnt+1);
	int sum=0;
	for(int j=1;j<=n;++j)
    {
		int m=0;
		int l=1;
		for (int k=j;k<=n;k*=2)
        {
			int p=lower_bound(a+l,a+cnt+1,k)-a;
			if(p==cnt+1)
                break;
            m+=k;
			l=p+1;
		}
		sum=max(sum,m);
	}
	printf ("%d\n",sum);
	return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值