Hello 2019 D. Makoto and a Blackboard(积性函数,概率DP)

题目链接:Hello 2019 D. Makoto and a Blackboard

题目大意:给你一个N,定义一个操作:将N替换为他的一个因子(包括1和N),现在重复K次以上操作,问最后期望的值是多少?

思路:显然是一道概率DP。我们先考虑对于一个素数幂n=a^l,dp[i][j]表示第i次操作后变成a^j的概率,对其进行DP。若n不是一个素数幂,将其分解为n={p_1}^{a_1}{p_2}^{a_2}.....{p_k}^{a_k}。在这里有一个非常重要的结论:期望是积性函数。即可分别计算n的每一个素因子的期望,根据积性函数的性质f\left ( ab \right )=f(a)f(b)再全部乘起来就行了。

代码如下

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <queue>
typedef long long ll;
using namespace std;
#define INF 0x3f3f3f3f
const int mod=1e9+7;
const int maxn=1e4+10;
ll n,k;
ll dp[maxn][55],inv[55];
ll solve(ll x,int c){
	dp[0][c]=1;
	for(int i=0;i<c;i++)dp[0][i]=0;
	for(int i=1;i<=k;i++){
		for(int j=0;j<=c;j++){
			dp[i][j]=0;
			for(int t=j;t<=c;t++)
				dp[i][j]=(dp[i][j]+dp[i-1][t]*inv[t+1]%mod)%mod;
		}
	}
	ll s1=0,s2=1;
	for(int i=0;i<=c;i++){
		s1=(s1+dp[k][i]*s2%mod)%mod;
		s2=s2*x%mod;
	}
	return s1;
}
int main()
{
	inv[1]=1;
	for(int i=2;i<=55;i++)
		inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
	scanf("%I64d%I64d",&n,&k);
	ll ans=1;
	for(int i=2;1ll*i*i<=n;i++){
		if(n%i==0){
			int cnt=0;
			while(n%i==0){
				n/=i;
				cnt++;
			}
			ans=1ll*ans*solve(i,cnt)%mod;
		}
	}
	if(n>1)ans=1ll*ans*solve(n%mod,1)%mod;
	printf("%I64d\n",ans);
	return 0;
}

注意一点,在O(\sqrt{n})求素因子时,由于n非常大i*i<=n会爆int。

通过这道题再次理解了积性函数的一些神奇作用,还学到了一个线性求逆元的方法

inv[1]=1;
	for(int i=2;i<=n;i++)
		inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;

具体证明非常容易推导。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值