自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

coolW的博客

人工智障进化中

  • 博客(11)
  • 收藏
  • 关注

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Deep RNNs

这一节主要讲解了深度RNN网络的结构。左边是在一般的神经网络中DNN的结构,由输入经过多层网络最终得到输出与此类似,Deep RNN也有类似的结构,之前的RNN网络都只是一层,如图画出了三层。用a[l]<t>来表示第l层激励的第t个timestep如图,在计算a[2]<3>的过程中,需要用到前面层的a[1]<3>和同一层前一个timestep的a[2]<2>并且计算的参数Wa和ba在同一层的不同ti

2018-03-05 15:21:56 915

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Long Short Term Memory(LSTM)

这一节主要讲解了LSTM单元LSTM和GRU略有区别,可以说是一种更加通用的GRU模型在LSTM中,c<t>不再等于a<t>,因此原来公式中的c<t-1>要改成a<t-1>,同时在LSTM中,也没有了Γr这个门但不同是,除了同样保持了Γu这个门之外,还增加了Γf(forget gate)和Γo(output gate)两个门。在原来c<t>的更新公式中,将(1-Γu)替换为Γf,并且在利用Γo来得到

2018-03-04 15:04:40 570

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Gated Recurrent Unit(GRU)

这一节主要讲述了GRU单元先来看看标准的RNN单元:简化的GRU单元:与一般的RNN单元不同的是增加了一个参数c,表示memory cell 在GRU中,令c<t> = a<t> 例如,当cat为单数时令c<t>为1,复数时为0,这个参数一直保持住并且在需要的时候(即要决定be动词的单复数的时候)会参与决定be动词单复数的计算。(???这里存疑,tanh函数如何保证c为0或者1,是不是应该用sig

2018-03-04 14:58:25 912

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Vanishing gradients with RNNs

这一节主要描述了RNN的梯度消失问题,解决方案就是后面的GRU和LSTM如图,两句话,cat对应was和cats对应were,但是这两个单词相隔很远,这样就存在一个问题,cat的单复数可能影响不了后面be动词的单复数判断,在神经网络中,这和之前在DNN中所见到的类似,梯度消失。也就是一个输出,只会受到附近的输入的影响。这里每个输入输入的就是一层神经网络梯度爆炸:同样,在RNN也会可能发生梯度爆炸的问

2018-03-04 14:52:13 449

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Sampling novel sequence

这一节主要讲了如何从一个训练好的RNN中进行采样得到序列从训练好的RNN中采样出一个序列之前在序列产生中讲到,首先RNN输入a<0>(0向量)和x<1>(0向量),通过一个RNN cell产生一个输出y。y = softmax(np.dot(Wya, a) + by),可以知道y是一个向量,向量每个entry表示对应index单词的概率。之前直接选择概率最大的那个作为y,在这里利用采样的方法,根据每

2018-03-04 14:48:31 769

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Language model and sequence generation

什么是语言建模?例如语音识别,识别说的到底是哪句话。pair和pear听起来非常相似,神经网络会输出两句话的可能性,当然一个训练良好的神经网络会对后面那句输出更高的概率。语音模型输出的是“是这个sentence”的概率,y<t>代表某个单词利用RNN来进行语言建模训练集:英语语料库 将每个单词符号化。句子有几个单词就有几个y,每个y输出的是可能性,代表每个单词的可能性,后面会筛选出可能性最大的那个

2018-03-04 14:22:49 452

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Different types of RNNs

这一节讲述了不同类型的RNN这是第一节中的图片,展示了一些不同的时序信号,对应不同类型的RNN来进行处理many-to-many的例子,例如之前将的识别人名位置。有一个输入就对应一个输出many-to-one类型,例如根据一句话“There is nothing to like in this movie”来判断给电影的评分,即多个输入只有一个输出one-to-one类型,这种类型没有必要用RNN来

2018-03-04 14:10:09 193

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Backpropagation through time

这一节主要讲了RNN的反向传播过程BP即从输出到输入,因此和FP是相反的一些箭头计算a的参数Wa和ba,计算y的参数Wy和by,绿色的箭头表示在这些不同的a和y的计算中都要用到这些参数(这里展示的是一层RNN,后面会讲到多层,在这一层中,不同的cell参数共享)。这里的箭头表示的前向传播的计算过程,loss函数用的分类中常用的cross entropy,对于每个输出y计算loss,总的loss是这些

2018-03-04 14:00:07 687

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Recurrent Neural Network Model

这一节内容比较多,主要讲述了如何搭建一个RNN标准单元使用标准神经网络的不足: 1.不同样本的输入输出长度不等(虽然都可以padding成最大长度的样本) 2.(更主要的原因)text不同的位置之间不共享学习到的参数RNN模型,可以用左边也可以用右边的来表示,右边用一个弯箭头表示循环。首先,输入对x<1>来说,经过一个RNN cell(每个cell中有多个unit,后面会讲到),得到输出y<1>

2018-03-04 13:51:21 796

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Notation

这一节主要讲了在后面构建模型时要用到的一些符号和标记。

2018-03-04 13:31:57 279

原创 吴恩达Deeplearning.ai 第五课 Sequence Model 第一周------Why sequence Models

第一次写博客,想到之前课程的笔记都是记在OneNote上,就觉得干脆放到博客上来共享讨论。后面有时间会更新之前的课程笔记。这些笔记记录了课上Ng讲解的一些重点,还有一些我认为的难点(其实就是一开始自己没有明白的东西啦~)这节课可以看做是一个引言,简述了RNN在语音识别,自然语言处理方面的一些应用。可以看到,RNN的应用范围广泛。在图中,不用的应用场景的时序模型并不相同。例如在第二个Mu...

2018-03-04 13:12:56 1306

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除