转https://blog.csdn.net/u011215144/article/details/72490138
这个报错不是数据feed的问题,而是等号左边的g_loss经过一次运算后得到了数值结果,覆盖了原来的g_loss操作,tf处理不了这种命名冲突,所以给变量用名字要注意啊
g_loss=0.01*gen_s_loss+g_c_loss
本身是一个操作。
循环执行一次后就报错
g_loss = sess.run(g_loss, feed_dict={in_: batch_con,s_img: batch_fake})
TypeError: Fetch argument 0.30283719 has invalid type <type 'numpy.float32'>, must be a string or Tensor. (Can not convert a float32 into a Tensor or Operation.)
参考:https://stackoverflow.com/questions/38306330/tensorflow-typeerror-on-session-run-arguments-output/
还有就是不同的scope之间的命名,要利用好,这在BP传播的时候很重要,另外,一定要注意tf.variable 与tf.get_variable的差异,不要让这个折磨到吐血
--------------------- 作者:momojiji2222 来源:CSDN 原文:https://blog.csdn.net/u011215144/article/details/72490138?utm_source=copy 版权声明:本文为博主原创文章,转载请附上博文链接!