知识点
yan__csdn
这个作者很懒,什么都没留下…
展开
-
grafana镜像打包
1,删除镜像docker images 查看所有镜像docker rmi [image id] 删除指定镜像删除报错:Error response from daemon: conflict: unable to delete bfcec653d832 (must be forced) - image is being used by stopped container 849808b59787原因,该镜像包含还在是有的容器,删除容器查看所有容器,docker ps -adocker s...原创 2021-03-03 17:42:19 · 536 阅读 · 0 评论 -
虚拟机centos 下安装docker
1 安装:https://www.cnblogs.com/yufeng218/p/8370670.html注:centos安装完网卡可能是关闭的不能联网打开无线网卡原创 2020-07-27 18:23:52 · 247 阅读 · 0 评论 -
修改虚拟机下系统时间与主机不一致的问题
LINUX的系统时间老是会不正确,今天发现了一个好的方法让系统时间跟网络上时间同步。方法如下:* * * * * /usr/sbin/ntpdate us.pool.ntp.org | logger -t NTP把以上内容放到crontab里面就ok了!这样以来系统时间永远是与网路上的时间同步。NTP协议全称网络时间协议(Network Time Procotol)。它的目的是在国际互联网上传递统一、标准的时间。具体的实现方案是在网络上指定若干时钟源网站,为用户提供授时服务,并且这些网.转载 2020-07-31 10:04:37 · 1708 阅读 · 1 评论 -
模型保存文件.npy
转自:https://blog.csdn.net/william_hehe/article/details/804122271.前言:在深度学习领域。有一个名词叫迁移学习。倍数贫穷人们所喜爱。拿来主意还是用着很舒服的嘛!在使用训练好的模型时,其中有一种保存的模型文件格式叫.npy。2.打开方式·实现代码:import numpy as nptest=np.load('./bvlc_alexnet...转载 2018-07-11 15:55:23 · 4205 阅读 · 0 评论 -
get.shape
a.get_shape() #得到数组a的维度 例如啊[[1,2],[3,4]] 得到[2,2]a[-1]表示数组a最后一维tf.shape(a)和a.get_shape()比较 相同点:都可以得到tensor a的尺寸 不同点:tf.shape()中a 数据的类型可以是tensor, list, array a.get_shape()中a...原创 2018-07-26 17:39:57 · 436 阅读 · 0 评论 -
交叉熵tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?首先明确一点,loss是代价值,也就是我们要最小化的值 tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)除去name参数用以指定该操作的name,与方法有关...转载 2018-07-31 21:05:05 · 309 阅读 · 0 评论 -
tensorflow--数据预处理
转载:https://mp.weixin.qq.com/s?__biz=MzI2MzYwNzUyNg%3D%3D&chksm=eab804d7ddcf8dc1b274d6343cbf281d5e45508a5966fee47d2e27590f834cc03634645218d4&idx=1&mid=2247483742&scene=21&sn=858c4...转载 2018-08-01 09:47:47 · 1012 阅读 · 0 评论 -
tensorflow 模型保存和读取
阅读数:36853一、TensorFlow模型保存和提取方法1. TensorFlow通过tf.train.Saver类实现神经网络模型的保存和提取。tf.train.Saver对象saver的save方法将TensorFlow模型保存到指定路径中,saver.save(sess,"Model/model.ckpt"),实际在这个文件目录下会生成4个人文件:checkpoint文件...转载 2018-08-12 10:25:26 · 7572 阅读 · 2 评论 -
startwith() endlist()
startswith判断文本是否以某个或某几个字符开始;endswith判断文本是否以某个或某几个字符结束;import os import cv2 for item in os.listdir('/home/xxx/TestImage/'): if item.endswith(('.jpg','.png','gif')): img = cv2.imrea...原创 2018-08-12 19:12:06 · 7045 阅读 · 1 评论 -
tensorflow 图片转 tfrecord
概述关于Tensorflow读取数据,官网给出了三种方法:供给数据(Feeding): 在TensorFlow程序运行的每一步, 让Python代码来供给数据。 从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。 预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。对于数据量较小而言,可能一般选择直接将...转载 2018-08-12 20:48:48 · 323 阅读 · 0 评论 -
深入理解机器学习中的:目标函数,损失函数和代价函数
参考知乎回答整理:https://www.zhihu.com/question/52398145主要参考:https://www.zhihu.com/question/52398145/answer/209358209基本概念:损失函数:计算的是一个样本的误差代价函数:是整个训练集上所有样本误差的平均目标函数:代价函数 + 正则化项实际应用:损失函数和代价函数是同一个东...转载 2018-09-11 16:57:24 · 339 阅读 · 0 评论 -
Deep Learning基础--各个损失函数的总结与比较
转自:https://www.cnblogs.com/shixiangwan/p/7953591.html损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则...转载 2018-09-11 21:19:34 · 712 阅读 · 0 评论 -
sess.run()返回参数出错 报错不能喂入int float
转https://blog.csdn.net/u011215144/article/details/72490138这个报错不是数据feed的问题,而是等号左边的g_loss经过一次运算后得到了数值结果,覆盖了原来的g_loss操作,tf处理不了这种命名冲突,所以给变量用名字要注意啊 g_loss=0.01*gen_s_loss+g_c_loss本身是一个操作。 循环执行...转载 2018-10-10 20:42:06 · 1418 阅读 · 0 评论 -
CNN中的LRN层
LRN层是按下述公式计算的:(用处不大 可被dropout normalization替代)转自:https://blog.csdn.net/searobbers_duck/article/details/51645941转载 2018-07-11 14:51:01 · 4091 阅读 · 0 评论 -
朴素贝叶斯
http://www.cnblogs.com/pinard/p/6069267.html我们要解决的问题,我们的问题是给定测试集的一个新样本特征(x(test)1,x(test)2,...x(test)n(x1(test),x2(test),...xn(test),我们如何判断它属于哪个类型? 既然是贝叶斯模型,当然是后验概率最大化来判断分类了。我们只要计算出所有的K个条件概率P(Y=Ck|X=...原创 2018-07-03 20:44:16 · 175 阅读 · 0 评论 -
metlab 函数
1 genpath('路径');在命令窗口中输入 genpath 命令,可以得到 MATLAB所有的搜索路径首尾连接而成的一个长字符串。示例:>> genpathans =D:\R2009a\toolbox;D:\R2009a\toolbox\aero;D:\R2009a\toolbox\aero\aero;D:\R2009a\toolbox\aero\aero\ja;之后还有很长.....原创 2018-03-22 15:27:34 · 538 阅读 · 0 评论 -
Word List
word list1: http://download.dogwood.com.cn/online/toeflchlx/WordList01.mp3word list2: http://download.dogwood.com.cn/online/toeflchlx/WordList02.mp3word list3: http://download.dogwood.com.cn/online/to...原创 2018-03-21 08:59:00 · 4030 阅读 · 0 评论 -
产生式和判别式分类方法的区别
转载 2018-04-16 16:42:10 · 1031 阅读 · 0 评论 -
1X1卷积核的作用
https://blog.csdn.net/liyuan123zhouhui/article/details/68946805转载 2018-04-18 13:41:56 · 134 阅读 · 0 评论 -
神经网络入门 基础
损失函数 softmax 交叉熵:转载 2018-05-04 10:48:35 · 118 阅读 · 0 评论 -
tensorflow入门 矩阵函数
常用函数:https://blog.csdn.net/u014595019/article/details/52805444loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=Y))#均方差 求平均 第一个参数是集合,第二个参数是方向,不设默认对全部求平均...转载 2018-05-04 10:50:07 · 490 阅读 · 0 评论 -
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
网址:http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html深层神经网络中的提示/技巧here we will present the implementation details (tricks or tips) in Deep Neural Networks, especially CNN for image-related...转载 2018-05-14 16:58:10 · 241 阅读 · 0 评论 -
Ridge Regression and Kernel Ridge Regression
http://blog.sina.com.cn/s/blog_eb23a2510102xe4o.htmlridge regression可以用来处理下面两类问题:一是数据点少于变量个数;二是变量间存在共线性。当变量间存在共线性的时候,最小二乘回归得到的系数不稳定,方差很大。这是因为系数矩阵X与它的转置矩阵相乘得到的矩阵不能求得其逆矩阵,而ridge regression通过引入参数lambda,使...转载 2018-05-23 10:05:20 · 725 阅读 · 0 评论 -
匹配追踪法
https://blog.csdn.net/codeur/article/details/70808907转载 2018-05-23 10:43:45 · 548 阅读 · 0 评论 -
决策树算法
https://blog.csdn.net/LY_ysys629/article/details/72809129转载 2018-06-04 20:14:31 · 166 阅读 · 0 评论 -
Adboost算法
一、发展历史Boosting算法是一种把若干个分类器整合为一个分类器的方法,在boosting算法产生之前,还出现过两种比较重要的将多个分类器整合 为一个分类器的方法,即boostrapping方法和bagging方法。我们先简要介绍一下bootstrapping方法和bagging方法。 1)bootstrapping方法的主要过程 主要步骤: i)重复地从一个样本集合D中采样n个样本 ...转载 2018-06-01 15:52:08 · 1306 阅读 · 0 评论 -
增量决策树
决策树:https://blog.csdn.net/HerosOfEarth/article/details/52347820原创 2018-07-03 10:46:59 · 1962 阅读 · 0 评论