CF 438D - The Child and Sequence
题目要求的操作:
1 区间求和
2 区间取模
3 单点修改
这道题目不要用到 lazy数组,因为条件是单点修改,直接修改的叶子节点,其次区间取模操作直接可以暴力。
下面来分析为什么区间的取模操作为什么可以直接对区间里所有的叶子节点暴力修改
a MOD b分为两种情况 1(a < b)2(a >= b)
对于第一种情况 我们不用操作,对自己大的数取模就是自己。
第二种情况 取模操作后a的值至少会减少一半 即:a <= a/2。
证明:
设 b + n = a。
a % b = (b + n)% b = ((b%b)+(n%b)) % b
此时有两种情况 1。n >b 2。 n < = b
第一种情况:n >= b 我们可以重复第一步骤 将n替换成(n1 + b) = n,直到 最后的 ni < b为止。
第二种情况:此时的 a%b = n成立。又有 (n+b = a,n < b)这两个条件 。得 n + n < a , n<a/2。
所以 a%b <= a/2;
这最坏就是二分情况,时间复杂度为 O(log2 n) 在int范围内我们可以接受。
我们在这里要保存两个值,一个是区间和,一个是区间的最大值(来判断要不要进行取模操作)。剩下的就是线段树的模板了
#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <stdio.h>
#include <ctype.h>
#include <bitset>
#define LL long long
#define ULL unsigned long long
#define mod 1000000007
#define INF 0x7ffffff
#define mem(a,b) memset(a,b,sizeof(a))
#define MODD(a,b) (((a%b)+b)%b)
#define maxn 100010
using namespace std;
LL sum[maxn << 2];
LL mx[maxn << 2];
LL a[maxn];
int lazy[maxn << 2];
int r[maxn];
void pushUp(int rt)
{
mx[rt] = max(mx[rt << 1] , mx[rt << 1|1]);//区间最大值
sum[rt] = sum[rt << 1] + sum[rt << 1|1];//区间和
}
/*void pushDown(int ln,int rn,int rt)
{
if(lazy[rt]){
lazy[rt << 1] += lazy[rt];
lazy[rt << 1 | 1] += lazy[rt];
sum[rt << 1] += lazy[rt];
sum[rt << 1 | 1] += lazy[rt];
lazy[rt] = 0;
}
}*/
void buildTree(int l,int r,int rt)
{
sum[rt] = 0,mx[rt] = 0;
if(l == r){
sum[rt] = a[l];
mx[rt] = a[l];
return;
}
int mid = (l + r) >> 1;
buildTree(l,mid,rt << 1);
buildTree(mid + 1,r,rt << 1 | 1);
pushUp(rt);
}
void upDate(int L,int l,int r,int rt,LL v)
{
if(r == l){
sum[rt] = v;
//lazy[rt] += v;
mx[rt] = v;
return;
}
int mid = (l + r) >> 1;
//pushDown(mid - l + 1,r - mid,rt);
if(L <= mid) upDate(L,l,mid,rt << 1,v);
else upDate(L,mid + 1,r,rt << 1 | 1,v);
pushUp(rt);
}
void upDate_mod(int L,int R,int l,int r,int rt,LL v)
{
if(v > mx[rt]) return;
if(l == r){//暴力找到根节点
sum[rt] %= v;
mx[rt] = sum[rt];
return;
}
int mid = (l + r) >> 1;
if(L <= mid) upDate_mod(L,R,l,mid,rt << 1,v);
if(R > mid) upDate_mod(L,R,mid + 1,r,rt << 1 | 1,v);
pushUp(rt);
}
LL query(int L,int R,int l,int r,int rt)
{
if(L <= l && R >= r){
return sum[rt];
}
int mid = (l + r) >> 1;
// pushDown(mid - l + 1, r - mid,rt);
LL ans = 0;
if(L <= mid) ans += query(L,R,l,mid,rt << 1);
if(R > mid) ans += query(L,R,mid + 1,r,rt << 1 | 1);
return ans;
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++) scanf("%lld",&a[i]);
buildTree(1,n,1);
for(int i = 0; i < m; i++){
int x,y;
char opt[3];
scanf("%s",opt);
if(opt[0] == '2'){
LL Mod;
scanf("%d%d%lld",&x,&y,&Mod);
upDate_mod(x,y,1,n,1,Mod);
}
if(opt[0] == '1'){
scanf("%d%d",&x,&y);
printf("%lld\n",query(x,y,1,n,1));
}
if(opt[0] == '3'){
int v;
scanf("%d%d",&x,&v);
upDate(x,1,n,1,v);
}
}
return 0;
}