线段树进阶 区间取模

                                        CF 438D - The Child and Sequence

题目要求的操作:

1 区间求和

2 区间取模

3 单点修改

这道题目不要用到 lazy数组,因为条件是单点修改,直接修改的叶子节点,其次区间取模操作直接可以暴力。

  下面来分析为什么区间的取模操作为什么可以直接对区间里所有的叶子节点暴力修改

a MOD b分为两种情况 1(a < b)2(a >= b)

对于第一种情况 我们不用操作,对自己大的数取模就是自己。

第二种情况 取模操作后a的值至少会减少一半 即:a <= a/2。

证明:

设 b + n = a。

a % b = (b + n)% b = ((b%b)+(n%b)) % b

此时有两种情况 1。n >b   2。 n < = b

第一种情况:n >= b 我们可以重复第一步骤 将n替换成(n1 + b) = n,直到 最后的 ni < b为止。

第二种情况:此时的 a%b = n成立。又有 (n+b = a,n < b)这两个条件 。得 n + n < a , n<a/2。

所以 a%b <= a/2;

 这最坏就是二分情况,时间复杂度为 O(log2 n) 在int范围内我们可以接受。

 

我们在这里要保存两个值,一个是区间和,一个是区间的最大值(来判断要不要进行取模操作)。剩下的就是线段树的模板了

#include <queue>
#include <cstdio>
#include <set>
#include <string>
#include <stack>
#include <cmath>
#include <climits>
#include <map>
#include <cstdlib>
#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
#include <stdio.h>
#include <ctype.h>
#include <bitset>
#define  LL long long
#define  ULL unsigned long long
#define mod 1000000007
#define INF 0x7ffffff
#define mem(a,b) memset(a,b,sizeof(a))
#define MODD(a,b) (((a%b)+b)%b)
#define maxn 100010
using namespace std;
LL sum[maxn << 2];
LL  mx[maxn << 2];
LL a[maxn];
int lazy[maxn << 2];
int r[maxn];
void pushUp(int rt)
{
    mx[rt] = max(mx[rt << 1] , mx[rt << 1|1]);//区间最大值
    sum[rt] = sum[rt << 1] + sum[rt << 1|1];//区间和
}
/*void pushDown(int ln,int rn,int rt)
{
    if(lazy[rt]){
      lazy[rt << 1] += lazy[rt];
      lazy[rt << 1 | 1] += lazy[rt];
      sum[rt << 1] += lazy[rt];
      sum[rt << 1 | 1] += lazy[rt];
      lazy[rt] = 0;
    }
}*/
void buildTree(int l,int r,int rt)
{
    sum[rt] = 0,mx[rt] = 0;
    if(l == r){
      sum[rt] = a[l];
      mx[rt] = a[l];
      return;
    }
    int mid = (l + r) >> 1;
    buildTree(l,mid,rt << 1);
    buildTree(mid + 1,r,rt << 1 | 1);
    pushUp(rt);
}
void upDate(int L,int l,int r,int rt,LL v)
{
    if(r == l){
        sum[rt] = v;
        //lazy[rt] += v;
        mx[rt]  = v;
        return;
    }
    int mid = (l + r) >> 1;
    //pushDown(mid - l + 1,r - mid,rt);
    if(L <= mid) upDate(L,l,mid,rt << 1,v);
    else  upDate(L,mid + 1,r,rt << 1 | 1,v);
    pushUp(rt);

}
void upDate_mod(int L,int R,int l,int r,int rt,LL v)
{
    if(v > mx[rt]) return;
    if(l == r){//暴力找到根节点
        sum[rt] %= v;
        mx[rt] = sum[rt];
        return;
    }
    int mid = (l + r) >> 1;
    if(L <= mid) upDate_mod(L,R,l,mid,rt << 1,v);
    if(R > mid) upDate_mod(L,R,mid + 1,r,rt << 1 | 1,v);
    pushUp(rt);
}
LL query(int L,int R,int l,int r,int rt)
{
    if(L <= l && R >= r){
        return sum[rt];
    }
    int mid = (l + r) >> 1;
   // pushDown(mid - l + 1, r - mid,rt);
    LL ans = 0;
    if(L <= mid) ans += query(L,R,l,mid,rt << 1);
    if(R > mid)  ans += query(L,R,mid + 1,r,rt << 1 | 1);
    return ans;
}
int main()
{
      int n,m;
      scanf("%d%d",&n,&m);
      for(int i = 1; i <= n; i++) scanf("%lld",&a[i]);
      buildTree(1,n,1);

      for(int i = 0; i < m; i++){
        int x,y;
        char opt[3];
        scanf("%s",opt);
        if(opt[0] == '2'){
          LL Mod;
          scanf("%d%d%lld",&x,&y,&Mod);
          upDate_mod(x,y,1,n,1,Mod);

        }
        if(opt[0] == '1'){
          scanf("%d%d",&x,&y);
          printf("%lld\n",query(x,y,1,n,1));
        }
        if(opt[0] == '3'){
          int v;
          scanf("%d%d",&x,&v);
          upDate(x,1,n,1,v);

        }
      }





    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值